Series HFG1E/4

प्रश्न-पत्र कोड 56/4/2 Q.P. Code

रोल न Roll				
	110.			

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

रसायन विज्ञान (सैद्धान्तिक) **CHEMISTRY** (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

- क्पया जाँच कर लें कि इस प्रश्न-पत्र में मृदित पृष्ठ 23 हैं ।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड़ को परीक्षार्थी उत्तर-पुस्तिका के मुख-पष्ट पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 35 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पृस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 23 printed pages.
- Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **35** questions.
- Please write down the serial number of the question in the answer-book before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पिढ़ए और उनका सख़्ती से पालन कीजिए:

- (i) इस प्रश्न-पत्र में 35 प्रश्न हैं । सभी प्रश्न अनिवार्य हैं ।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **क, ख, ग, घ** एवं **ङ** /
- (iii) खण्ड क में प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं।
- (iv) खण्ड ख में प्रश्न संख्या 19 से 25 तक अति लघु-उत्तरीय प्रकार के **दो-दो** अंकों के प्रश्न हैं।
- (v) खण्ड ग में प्रश्न संख्या 26 से 30 तक लघु-उत्तरीय प्रकार के तीन-तीन अंकों के प्रश्न हैं।
- (vi) खण्ड घ में प्रश्न संख्या 31 तथा 32 केस-आधारित चार-चार अंकों के प्रश्न हैं।
- (vii) खण्ड ङ में प्रश्न संख्या 33 से 35 दीर्घ-उत्तरीय प्रकार के **पाँच-पाँच** अंकों के प्रश्न हैं।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड ख के 2 प्रश्नों में, खण्ड ग के 2 प्रश्नों में, खण्ड घ के 2 प्रश्नों में तथा खण्ड ङ के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
- (ix) कैल्कुलेटर का उपयोग **वर्जित** है।

खण्ड क

प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं।

 $18 \times 1 = 18$

1.	दिए गए	किसी	कार्बनिक	विलायक	में	कोई	यौगिक	पूर्ण	द्वितयन	बनाता	है	। वान्ट	हॉफ	कारक
	'i' है :													

(a) 2.0

(b) 0.5

(c) 0.25

(d) 1.0

2. एक अभिक्रिया $A + 2B \longrightarrow C + D$ के लिए, वेग नियम $r = k[A] [B]^2$ से दिया गया है, A की सांद्रता स्थिर रखी जाती है और B की दुगुनी कर दी जाती है । अभिक्रिया का वेग :

(a) दुगुना हो जाएगा

(b) आधा हो जाएगा

(c) परिवर्तित नहीं होगा

(d) चौगुना हो जाएगा

3. 1-फ़ेनिल-2-क्लोरोप्रोपेन की ऐल्कोहॉली KOH के साथ अभिक्रिया मुख्यत: देती है:

(a) 1-फ़ेनिलप्रोपीन

- (b) 3-फ़ेनिलप्रोपीन
- (c) 1-फ़ेनिलप्रोपेन-3-ऑल
- (d) 1-फ़ेनिलप्रोपेन-2-ऑल

56/4/2

General Instructions:

Read the following instructions carefully and strictly follow them:

- (i) This question paper contains 35 questions. All questions are compulsory.
- (ii) This question paper is divided into **five** Sections **A**, **B**, **C**, **D** and **E**.
- (iii) In **Section A** Questions no. **1** to **18** are multiple choice (MCQ) type questions, carrying **1** mark each.
- (iv) In **Section B** Questions no. **19** to **25** very short answer (VSA) type questions, carrying **2** marks each.
- (v) In **Section** C Questions no. **26** to **30** are short answer (SA) type questions, carrying **3** marks each.
- (vi) In **Section D** Questions no. **31** and **32** are case-based questions carrying **4** marks each.
- (vii) In **Section E** Questions no. **33** to **35** are long answer (LA) type questions carrying **5** marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 2 questions in Section C, 2 questions in Section D and 2 questions in Section E.
- (ix) Use of calculators is **not** allowed.

The Van't Hoff factor 'i' is:

1-phenylpropene

2.0

SECTION A

Questions no. 1 to 18 are Multiple Choice (MCQ) type Questions, carrying 1 mark each. 18×1=18

A compound undergoes complete dimerization in a given organic solvent.

(h)

0.5

	(a)	2.0		(D)	0.0			
	(c)	0.25		(d)	1.0			
2.	For t	the reaction	A + 2B -	—→ C + I	Э,	the rate law	is given	by

 $r = k[A] [B]^2$, the concentration of A is kept constant while that of B is doubled. The rate of the reaction will:

(a) double(b) become half(c) not change(d) quadruple

3. Reaction of 1-phenyl-2-chloropropane with alcoholic KOH gives mainly:

(c) 1-phenylpropan-3-ol (d) 1-phenylypropan-2-ol

3-phenylpropene

1.

(a)

(a)

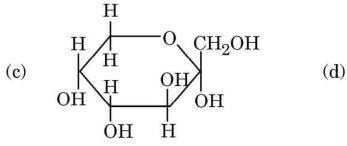
(b)

- 4. संक्रमण धातुओं के अन्तराकाशी यौगिक धातु की अपेक्षा होते हैं :
 - (a) अधिक कोमल

(b) अधिक तन्य

(c) अधिक कठोर

- (d) अधिक धात्विक
- **5.** निम्नलिखित संकुल यौगिकों के युगलों द्वारा किस प्रकार की समावयवता प्रदर्शित की जाती है ?


 $[\mathrm{Co(NH_3)_6}] \ [\mathrm{Cr(CN)_6}] \$ और $[\mathrm{Cr(NH_3)_6}] \ [\mathrm{Co(CN)_6}]$

(a) बंधनी समावयवता

- (b) हाइड्रेट समावयवता
- (c) उपसहसंयोजन समावयवता
- (d) आयनन समावयवता
- **6.** निम्नलिखित संरचनाओं में से कौन-सी α -D-ग्लूकोस को निरूपित करती है ?

$$(a) \begin{array}{c|c} & CH_2OH \\ H & OH \\ HO & H \\ OH & OH \\ \end{array}$$

 $\begin{array}{c|c} & CH_2OH \\ H & OH \\ OH & H \\ H & OH \\ \end{array}$

 $\begin{array}{c|c} H & O & OH \\ H & OH & CH_2OH \\ OH & H & \end{array}$

7. अभिक्रिया

में निर्मित उत्पाद है:

$$(a) \qquad HO \underbrace{\hspace{1cm} COOC_2H_5}$$

(b) CH₂OH

$$(c) \qquad \qquad \begin{array}{c} \text{CH}_2\text{OH} \\ \text{(d)} \end{array}$$

$$COOC_2H_5$$

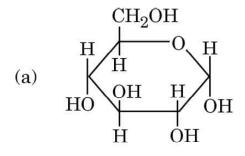
4	/D1 - ' - 4 4'4' - 1	compounds of trans	. 1. 1
L.	I ne interstitial	composings of trans	sition metals are

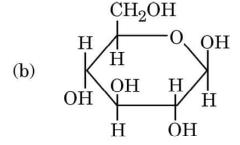
(a) softer

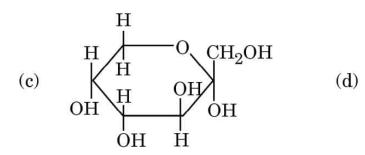
(b) more ductile

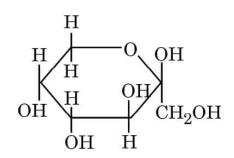
(c) harder

(d) more metallic


than the metal itself.


5. What type of isomerism is shown by the following pair of complex compounds?


 $[Co(NH_3)_6]$ $[Cr(CN)_6]$ and $[Cr(NH_3)_6]$ $[Co(CN)_6]$


- (a) Linkage isomerism
- (b) Hydrate isomerism
- (c) Coordination isomerism
- (d) Ionization isomerism

6. Which of the following structures represents α -D-glucose?

7. The product formed in the reaction :

$$O \longrightarrow COOC_2H_5 \longrightarrow NaBH_4 \longrightarrow NaB$$

is

$$(a) \qquad HO \xrightarrow{COOC_2H_5}$$

(b) $O \longrightarrow CH_2OH$

$$(c) \qquad \qquad \begin{array}{c} \text{CH}_2\text{OH} \\ \text{(d)} \end{array}$$

8.		ऐमीन पर नाइट्रस अम्ल की क्रिय	•	
	(a)	एथिल नाइट्राइट	` '	एथिल ऐल्कोहॉल
	(c)	नाइट्रोएथेन	(d)	एथेन
9.	_	\mathbf{D}_4 के विलयन में से फैराडे की \mathbf{c}_4 होंगे ?	कितनी संख्या !	प्रवाहित करने से 1 मोल Cu और O_2
	(a)	1.0	(b)	4.0
	(c)	8.0	(d)	2.0
10.	यदि वि अर्ध अ	मसी शून्य कोटि की अभिक्रिया गिभिक्रिया पूर्ण करने में लगने वार	में प्रारम्भिक सां ला समय :	द्रता को घटाकर $\frac{1}{4}$ कर दिया जाए, तो
	(a)	वही रहेगा	(b)	एक-चौथाई रह जाएगा
	(c)	चार गुना हो जाएगा	(d)	दुगुना हो जाएगा
11.	निम्नलि	नखित कार्बोहाइडेटों में से कौन-	सा जल-अपघटन	पर ग्लूकोस और फ्रक्टोज़ देता है ?
	(a)	सूक्रोस	(b)	स्टार्च
	(c)	लैक्टोस	(d)	माल्टोस
12.	निम्नलि	निखत में से किस विटामिन की विटामिमिन की विटामिन की विटामिन की विटामिन की विटामिन की विटामिन की विट	कमी से स्कर्वी ह	ो जाती है ?
	(a)	विटामिन A		विटामिन B ₆
	(c)	विटामिन C	(d)	विटामिन B_{12}
13.	यह अ	$ ext{CH}_3 = rac{1. ext{ CrO}_2 ext{Cl}_2/ ext{C}}{2. ext{ H}_3 ext{O}^+}$ भिक्रिया जानी जाती है :	CS_2	СНО
	(a)	कैनिज़ारो अभिक्रिया		
		ईटार्ड अभिक्रिया		
		रोज़ेनमुंड अपचयन		
		ऐल्डोल संघनन		
14.	निम्नलि	नखित में से किसमें केन्द्रीय परम	ाणु +4 ऑक्सीक	रण अवस्था दर्शाता है ?
	(a)	$K_2[Ni(CN)_4]$	(b)	$\left[\mathrm{Cu(NH_3)}_4\right]^{2+}$
	(c)	$[\mathrm{Pt}(\mathrm{NH}_3)_2\mathrm{Cl}_2]$	(d)	${\rm [Pt(en)}_2{\rm Cl}_2{\rm]}^{2+}$
56/4/2	2		<u>6</u>	回货回 *2553/r

			<u></u>
The a	action of nitrous acid on ethyla	mine gi	ves mainly :
(a)	ethyl nitrite	(b)	ethyl alcohol
(c)	nitroethane	(d)	ethane
		rough a	a solution of ${\rm CuSO}_4$ to produce
	-	(b)	4.0
(c)	8.0	(d)	2.0
If th	e initial concentration is redu	iced to	$\frac{1}{4}$ th in a zero order reaction,
then	the time taken for half the read	ction to	complete:
(a)	remains the same	(b)	reduces to one-fourth
(c)	increases four times	(d)	doubles
		ving ca	rbohydrates gives glucose and
(a)	Sucrose	(b)	Starch
(c)	Lactose	(d)	Maltose
The o	deficiency of which of the follow	ing vit	amins causes Scurvy ?
(a)	Vitamin A	(b)	Vitamin B ₆
(c)	Vitamin C	(d)	Vitamin B ₁₂
	$ \begin{array}{c} \text{CH}_{3} \\ \hline \begin{array}{c} \text{1. CrO}_{2}\text{Cl}_{2}/\text{CS}_{2} \\ \hline \begin{array}{c} \text{2. H}_{3}\text{O}^{+} \end{array} \end{array} $		CHO
This	reaction is known as:		
(a)	Cannizzaro reaction		
` ,			
In w	hich of the following does the c	entral :	atom exhibit an oxidation state
		(b)	$\left[\mathrm{Cu(NH_3)_4}\right]^{2+}$
(c)		(d)	$[Pt(en)_2Cl_2]^{2+}$
	(a) (c) The 1 mo (a) (c) If the then (a) (c) On 1 fruct (a) (c) The (a) (c) This (a) (b) (c) (d) In wide (a)	(a) ethyl nitrite (c) nitroethane The number of faradays passed that 1 mol of Cu and O2 will be: (a) 1·0 (c) 8·0 If the initial concentration is reduction the time taken for half the reaction increases four times (b) increases four times On hydrolysis, which of the follow fructose? (a) Sucrose (b) Lactose The deficiency of which of the follow (a) Vitamin A (b) Vitamin C CH3 1. CrO2Cl2/CS2 2. H3O+ This reaction is known as: (a) Cannizzaro reaction (b) Etard reaction (c) Rosenmund reduction (d) Aldol condensation In which of the following does the conference of the confere	(c) nitroethane (d) The number of faradays passed through a 1 mol of Cu and O_2 will be: (a) 1.0 (b) (c) 8.0 (d) If the initial concentration is reduced to then the time taken for half the reaction to (a) remains the same (b) (c) increases four times (d) On hydrolysis, which of the following cafructose? (a) Sucrose (b) (c) Lactose (d) The deficiency of which of the following vit (a) Vitamin A (b) (c) Vitamin C (d) $CH_3 = \frac{1 \cdot \text{CrO}_2\text{Cl}_2/\text{CS}_2}{2 \cdot \text{H}_3\text{O}^+}$ This reaction is known as: (a) Cannizzaro reaction (b) Etard reaction (c) Rosenmund reduction (d) Aldol condensation In which of the following does the central of +4? (a) $K_2[\text{Ni}(\text{CN})_4]$ (b)

प्रश्न संख्या 15 से 18 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है । इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (a), (b), (c) और (d) में से चुनकर दीजिए।

- (a) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (b) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या *नहीं* करता है।
- (c) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (d) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।
- **15.** अभिकथन (A): जब जल में ग्लूकोस मिलाया जाता है, तो क्वथनांक में उन्नयन प्रेक्षित किया जाता है।
 - कारण (R): वाष्प दाब में कमी के कारण क्वथनांक में उन्नयन होता है।
- **16.** अभिकथन (A) : दुर्बल विद्युत्-अपघट्यों के लिए, विद्युत्-अपघटनी विलयन का तनुकरण करने पर Λ_m तेजी से बढ़ता है।
 - कारण (R) : दुर्बल विद्युत्-अपघट्यों के लिए, विलयन के तनुकरण के साथ वियोजन मात्रा घटती है।
- 17. अभिकथन (A): ऐनिलीन का मोनोब्रोमीनन ऐमीनो समूह को ऐसीटिलन द्वारा परिरक्षित करके आसानी से किया जा सकता है।
 - कारण (R): ऐसीटिलन, ऐमीनो समूह के सिक्रयण प्रभाव को कम कर देता है।
- 18. अभिकथन (A): 3d श्रेणी में मैंगनीज़ +7 की उच्चतम ऑक्सीकरण अवस्था प्रदर्शित करता है।
 - कारण (R): संक्रमण धातुएँ परिवर्तनीय ऑक्सीकरण अवस्थाएँ प्रदर्शित करती हैं।

For Questions number 15 to 18, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below.

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (c) Assertion (A) is true, but Reason (R) is false.
- (d) Assertion (A) is false, but Reason (R) is true.
- **15.** Assertion (A): When glucose is added to water, an elevation in boiling point is observed.
 - Reason(R): The lowering of vapour pressure causes elevation in the boiling point.
- **16.** Assertion (A): \wedge_m for weak electrolytes shows a sharp increase when the electrolytic solution is diluted.
 - Reason (R): For weak electrolytes, degree of dissociation decreases with dilution of solution.
- **17.** Assertion (A): Monobromination of aniline can be conveniently done by protecting the amino group by acetylation.
 - Reason(R): Acetylation decreases the activating effect of the amino group.
- **18.** Assertion (A): Manganese shows the highest oxidation state of +7 in 3d series.
 - *Reason (R):* Transition metals show variable oxidation states.

खण्ड ख

19. (क) एथेनॉल और ऐसीटोन के मिश्रण द्वारा राउल्ट नियम से किस प्रकार का विचलन दर्शाया जाता है ? कारण दीजिए ।

2

अथवा

(ख) स्थिरक्वाथी को परिभाषित कीजिए । राउल्ट नियम से ऋणात्मक विचलन द्वारा किस प्रकार का स्थिरक्वाथी निर्मित होता है ? एक उदाहरण दीजिए ।

2

20. $C_6H_{13}Cl$ अणुसूत्र का ऐल्किल हैलाइड (A) ऐल्कोहॉली KOH के साथ अभिक्रिया करके C_6H_{12} अणुसूत्र वाले दो समावयवी ऐल्कीन (B) और (C) देता है । दोनों ऐल्कीन हाइड्रोजनीकरण किए जाने पर 2,3-डाइमेथिलब्यूटेन देते हैं । A, B और C की संरचनाएँ लिखिए ।

2

2

21. N_2O_5 के प्रथम कोटि विघटन का वेग स्थिरांक निम्नलिखित समीकरण द्वारा दिया जाता है :

$$\log k = 23.6 - \frac{2 \times 10^4 \,\mathrm{K}}{\mathrm{T}}$$

इस अभिक्रिया के लिए \mathbf{E}_a परिकलित कीजिए।

 $[R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}]$

 $4 \times \frac{1}{2} = 2$

- 22. उस सेल का नाम बताइए जो :
 - (क) अपोलो अंतरिक्ष कार्यक्रम में उपयोग किया गया था।
 - (ख) वाहनों एवं इन्वर्टरों में उपयोग किया जाता है।
 - (ग) श्रवण यंत्रों तथा घड़ियों के लिए उपयुक्त होता है।
 - (घ) स्थिर विभव नहीं देता है और ट्रांज़िस्टरों में उपयोग में लाया जाता है।
- 23. निम्नलिखित उपसहसंयोजन सत्ताओं के आई.यू.पी.ए.सी. नाम लिखिए :

 $2\times 1=2$

- (\mathfrak{F}) $[\operatorname{Cr}(\operatorname{NH}_3)_3(\operatorname{H}_2\operatorname{O})_3]\operatorname{Cl}_3$
- (\mathbf{G}) $\mathbf{K}_3[\mathrm{Al}(\mathrm{C}_2\mathrm{O}_4)_3]$

SECTION B

19. (a) What type of deviation from Raoult's law is shown by a mixture of ethanol and acetone? Give reason.

2

OR

(b) Define Azeotrope. What type of azeotrope is formed by negative deviation from Raoult's law? Give an example.

2

20. An alkyl halide (A) of molecular formula $C_6H_{13}Cl$ on treatment with alcoholic KOH gives two isomeric alkenes (B) and (C) of molecular formula C_6H_{12} . Both alkenes on hydrogenation give 2,3-dimethylbutane. Write the structures of (A), (B) and (C).

2

2

21. The rate constant for the first order decomposition of N_2O_5 is given by the following equation :

$$\log k = 23.6 - \frac{2 \times 10^4 \,\text{K}}{\text{T}}$$

Calculate E_a for this reaction.

$$[R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}]$$

 $4 \times \frac{1}{2} = 2$

- **22.** Name the cell which:
 - (a) was used in Apollo Space programme.
 - (b) is used in automobiles and inverters.
 - (c) is suitable for hearing aids and watches.
 - (d) does not give a steady potential and is used in transistors.
- **23.** Write IUPAC names of the following coordination entities:

 $2\times1=2$

- (a) $[Cr(NH_3)_3(H_2O)_3]Cl_3$

24. 1-मेथॉक्सी-4-नाइट्रोबेन्ज़ीन के विरचन के लिए निम्नलिखित में से कौन-सा उपयुक्त अभिकर्मकों का समुच्चय है और क्यों ?

2

$$($$
ক $)$ \longleftrightarrow $+$ $\mathrm{CH_3Br}$ $($ ख $)$ \longleftrightarrow $+$ $\mathrm{CH_3ONa}$ $\mathrm{NO_2}$

25. (क) निम्नलिखित अभिक्रियाओं के उत्पाद लिखिए:

 $2 \times 1 = 2$

(i)
$$\xrightarrow{\text{CHO}} \xrightarrow{\text{Hig NaOH}} \Delta$$

(ii)
$$+ H_2NNH - CO - NH_2 \xrightarrow{H^+}$$

अथवा

(ख) निम्नलिखित रूपांतरणों को अधिकतम दो चरणों में सम्पन्न कीजिए :

 $2\times 1=2$

- (i) टालूईन से बेंज़ोइक अम्ल
- (ii) बेंज़ैल्डिहाइड से 1-फ़ेनिलएथेनॉल

खण्ड ग

26. स्थिर आयतन पर C_2H_5Cl के प्रथम कोटि तापीय विघटन के दौरान निम्नलिखित आँकड़े प्राप्त हुए :

$$\mathrm{C_{2}H_{5}Cl}\left(\mathrm{g}\right) \longrightarrow \mathrm{C_{2}H_{4}}\left(\mathrm{g}\right) + \mathrm{HCl}\left(\mathrm{g}\right)$$

प्रयोग	समय (s ⁻¹)	कुल दाब (atm)
1	0	0.4
2	100	0.6

वेग स्थिरांक परिकलित कीजिए।

3

[दिया गया है : $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 4 = 0.6021$]

Which of the following is an appropriate set of reactants for the 24. preparation of 1-methoxy-4-nitrobenzene and why?

 NO_2

25. Write the products of the following reactions: (a)

 NO_2

 $2 \times 1 = 2$

2

$$(i) \qquad \overbrace{\qquad \qquad Conc. \, NaOH \qquad}^{CHO} \xrightarrow{\qquad Conc. \, NaOH \qquad}$$

(ii)
$$+ H_2NNH - CO - NH_2 \xrightarrow{H^+}$$

OR

Do the following conversions in not more than two steps: (b)

 $2\times1=2$

- Toluene to Benzoic acid (i)
- Benzaldehyde to 1-Phenylethanol (ii)

SECTION C

The following data were obtained during the first order thermal **26.** decomposition of C_2H_5Cl at a constant volume :

 $C_2H_5Cl(g) \longrightarrow C_2H_4(g) + HCl(g)$

Experiment	Time (s ⁻¹)	Total pressure (atm)
1	0	0.4
2	100	0.6

Calculate the rate constant.

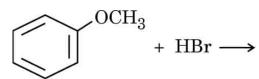
3

(Given: $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 4 = 0.6021$)

27. यदि बेन्ज़ोइक अम्ल ($M = 122~g~mol^{-1}$) बेन्ज़ीन में घोलने पर संगुणित होकर द्वितय बनाता हो और $27^{\circ}C$ पर $6\cdot1~g$ बेन्ज़ोइक अम्ल का 100~mL बेन्ज़ीन में परासरण दाब $6\cdot5~atm$ हो, तो बेन्ज़ोइक अम्ल का संगुणन कितने प्रतिशत होगा ?

3

(दिया गया है : $R = 0.0821 L atm K^{-1} mol^{-1}$)


28. निम्नलिखित में से किन्हीं तीन के उत्तर दीजिए:

 $3 \times 1 = 3$

- (क) संयोजकता आबंध सिद्धांत के आधार पर $[Fe(CN)_6]^{3-}$ में संकरण के प्रकार की व्याख्या कीजिए। (दिया गया है : Fe का परमाणु क्रमांक = 26)
- (ख) $[PtCl_2(en)_2]^{2+}$ आयन के ज्यामितीय समावयव आरेखित कीजिए।
- (η) $[\mathrm{NiCl_4}]^{2-}$ अनुचुम्बकीय है जबिक $[\mathrm{Ni(CO)_4}]$ प्रतिचुम्बकीय है यद्यपि दोनों चतुष्फलकीय हैं । क्यों ?
- (घ) उस समावयवता का नाम लिखिए जब कोई उभदंती लिगन्ड केन्द्रीय धातु आयन से बंधित हो । उभदंती लिगन्ड का एक उदाहरण दीजिए ।
- 29. निम्नलिखित के कारण दीजिए:

3×1=3

- (a) $S_N 1$ अभिक्रिया के प्रति बेन्ज़िल क्लोराइड अत्यधिक अभिक्रियाशील है ।
- (ख) (±)-ब्यूटेन-2-ऑल ध्रुवण अघूर्णक है, यद्यपि इसमें किरेल कार्बन परमाणु होता है।
- (ग) क्लोरोफॉर्म को बन्द गहरी रंगीन बोतलों में रखा जाता है।
- 30. (क) (i) एक उदाहरण सहित हाइड्रोबोरॉनन-ऑक्सीकरण अभिक्रिया लिखिए।
 - (ii) निम्नलिखित अभिक्रिया के उत्पाद लिखिए:

(iii) फ़ीनॉल की तुलना में p-नाइट्रोफ़ीनॉल अधिक अम्लीय क्यों है ?

3×1=3

अथवा

- (ख) (i) क्या होता है जब फ़ीनॉल निम्नलिखित के साथ अभिक्रिया करता है :
 - (1) सांद्र HNO₃, और
 - (2) जलीय NaOH की उपस्थिति में CHCl₃ से और उसके पश्चात् अम्लीकरण द्वारा ?

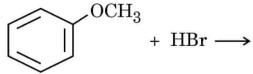
केवल समीकरण लिखिए।

(ii) CH_3ONa की $(CH_3)_3C - Br$ के साथ अभिक्रिया 2-मेथिलप्रोपीन देती है न कि $(CH_3)_3C - OCH_3$, क्यों ? 2+1=3

27. If benzoic acid (M = 122 g mol^{-1}) is associated into a dimer when dissolved in benzene and the osmotic pressure of a solution of 6.1 g of benzoic acid in 100 mL benzene is 6.5 atm at 27°C , then what is the percentage association of benzoic acid?

3

(Given : $R = 0.0821 L atm K^{-1} mol^{-1}$)


28. Answer any *three* of the following questions :

 $3 \times 1 = 3$

- (a) Explain the type of hybridization in $[Fe(CN)_6]^{3-}$ on the basis of valence bond theory. (Given : Atomic number of Fe = 26)
- (b) Draw the geometrical isomers of $[PtCl_2(en)_2]^{2+}$ ion.
- (c) $[NiCl_4]^{2-}$ is paramagnetic while $[Ni(CO)_4]$ is diamagnetic though both are tetrahedral. Why?
- (d) Name the type of isomerism when ambidentate ligands are attached to central metal ion. Give one example of ambidentate ligand.
- **29.** Account for the following:

3×1=3

- (a) Benzyl chloride is highly reactive towards S_N1 reaction.
- (b) (±)-Butan-2-ol is optically inactive, though it contains a chiral carbon atom.
- (c) Chloroform is stored in closed dark coloured bottles.
- **30.** (a) (i) Write hydroboration-oxidation reaction with an example.
 - (ii) Write the products of the following reaction:

(iii) Why is p-nitrophenol more acidic than phenol?

 $3 \times 1 = 3$

OR.

- (b) (i) What happens when phenol reacts with
 - (1) Conc. HNO_3 , and
 - (2) CHCl_3 in presence of aqueous NaOH followed by acidification ? Write equations only.
 - (ii) Why does the reaction of ${\rm CH_3ONa}$ with ${\rm (CH_3)_3C}$ Br give 2-methylpropene and not ${\rm (CH_3)_3C}$ OCH₃ ? 2+1=3

खण्ड घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं । केस को सावधानीपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए ।

- 31. ऐमीन प्रायः नाइट्रो, हैलाइड, ऐमाइड, इमाइड, इत्यादि यौगिकों से बनती हैं । ये हाइड्रोजन आबंधन प्रदर्शित करती हैं जिससे इनके भौतिक गुण प्रभावित होते हैं । ऐल्किल ऐमीनों में इलेक्ट्रॉन त्यागने, त्रिविम तथा हाइड्रोजन आबंधन कारक प्रोटिक ध्रुवीय विलायकों में प्रतिस्थापित अमोनियम धनायन के स्थायित्व अर्थात् क्षारकता को प्रभावित करते हैं । ऐरोमैटिक ऐमीनों में इलेक्ट्रॉन विमोचक व अपनयक समूह क्रमशः क्षारकता में वृद्धि एवं हास करते हैं । नाइट्रोजन परमाणु पर उपस्थित हाइड्रोजन परमाणुओं की संख्या का अभिक्रिया के प्रकार तथा प्राप्त उत्पाद की प्रकृति पर प्रभाव प्राथमिक, द्वितीयक एवं तृतीयक ऐमीनों की पहचान तथा विभेद के लिए उत्तरदायी है । ऐरोमैटिक वलय में ऐमीनो समूह की उपस्थिति ऐरोमैटिक ऐमीनों की अभिक्रियाशीलता को बढ़ा देती है । ऐरिल डाइऐज़ोनियम लवण डाइएज़ो समूह के अपचायक निष्कासन द्वारा ऐरिल हैलाइड, सायनाइड, फ़ीनॉल तथा ऐरीन प्राप्त करने की लाभप्रद विधियाँ उपलब्ध कराते हैं । निम्नलिखित प्रश्नों के उत्तर दीजिए:
 - (i) निम्नलिखित को जलीय विलयन में उनकी pK_b मानों के बढ़ते हुए क्रम में व्यवस्थित कीजिए :

 $C_2H_5NH_2, \ \ (C_2H_5)_2NH, \ \ (C_2H_5)_3N$

- (ii) यद्यपि ऐमीनो समूह ऑर्थो एवं पैरा-निर्देशक होता है फिर भी ऐनिलीन नाइट्रोकरण द्वारा यथेष्ट मात्रा में मेटा-नाइट्रोऐनिलीन देती है । क्यों ?
- (iii) $C_7H_6O_2$ अणुसूत्र का एक ऐरोमैटिक यौगिक 'A' जलीय अमोनिया से अभिक्रिया के उपरान्त गरम करने पर यौगिक 'B' निर्मित करता है । यौगिक 'B', Br_2 और जलीय KOH के साथ गरम करने पर C_6H_7N अणुसूत्र का एक यौगिक 'C' देता है । A, B और C की संरचनाएँ लिखिए ।

अथवा

1

1

SECTION D

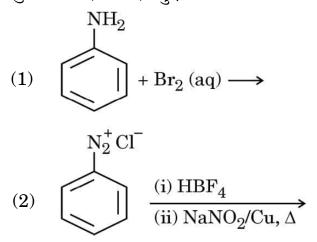
The following questions are case-based questions. Read the case carefully and answer the questions that follow.

31. Amines are usually formed from nitro compounds, halides, amides, imides, etc. They exhibit hydrogen bonding which influences their physical properties. In alkyl amines, a combination of electron releasing, steric and hydrogen bonding factors influence the stability of the substituted ammonium cations in protic polar solvents and thus affect the basic nature of amines. In aromatic amines, electron releasing and withdrawing groups, respectively increase and decrease their basic character. Influence of the number of hydrogen atoms at nitrogen atom on the type of reactions and nature of products is responsible for identification and distinction between primary, secondary and tertiary amines. Presence of amino group in aromatic ring enhances reactivity of the aromatic amines. Aryl diazonium salts provide advantageous methods for producing aryl halides, cyanides, phenols and arenes by reductive removal of the diazo group.

Answer the following questions:

(i) Arrange the following in the increasing order of their pK_b values in aqueous solution :

$${\rm C_2H_5NH_2}\,,\ \ ({\rm C_2H_5)_2NH},\ \ ({\rm C_2H_5)_3N}$$


- (ii) Aniline on nitration gives a substantial amount of m-nitroaniline, though amino group is o/p directing. Why?
- (iii) An aromatic compound 'A' of molecular formula $C_7H_6O_2$ on treatment with aqueous ammonia and heating forms compound 'B'. Compound 'B' on heating with Br_2 and aqueous KOH gives a compound 'C' of molecular formula C_6H_7N . Write the structures of A, B and C.

OR

1

1

(iii) मुख्य उत्पादों को देते हुए निम्नलिखित अभिक्रियाओं को पूर्ण कीजिए : $2 \times 1 = 2$

32. जैव-तंत्र अनेक जिटल जैव अणु जैसे कार्बोहाइड्रेट, प्रोटीन, न्यूक्लीक अम्ल, लिपिड, आदि से मिलकर बनते हैं । कार्बोहाइड्रेट, ध्रुवण घूर्णक पॉलिहाइड्रॉक्सी ऐल्डिहाइड अथवा कीटोन अथवा वे अणु होते हैं जिनके जल-अपघटन पर इस प्रकार की इकाइयाँ प्राप्त होती हैं । इन्हें मुख्य रूप से तीन समूहों में वर्गीकृत किया गया है — मोनोसैकेराइड, ओलिगोसैकेराइड और पॉलिसैकेराइड । मोनोसैकेराइड ग्लाइकोसिडिक बंध द्वारा जुड़कर डाइसैकेराइड जैसे सूक्रोस, माल्टोस अथवा पॉलिसैकेराइड जैसे स्टार्च और सेलूलोस बनाते हैं ।

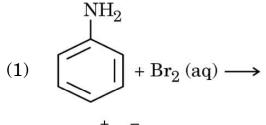
अन्य जैव अणु : प्रोटीन α -ऐमीनो अम्लों के बहुलक हैं जो पेप्टाइड आबंधों द्वारा जुड़े होते हैं । दस ऐमीनो अम्ल आवश्यक ऐमीनो अम्ल कहलाते हैं । प्रोटीनों की संरचना एवं आकृति का अध्ययन चार भिन्न स्तरों पर किया जा सकता है अर्थात् प्राथमिक, द्वितीयक, तृतीयक एवं चतुष्क संरचनाएँ तथा प्रत्येक स्तर पूर्व की तुलना में अधिक जटिल होते हैं ।

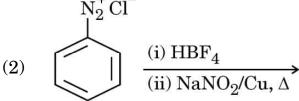
निम्नलिखित प्रश्नों के उत्तर दीजिए:

- (i) ग्लाइकोसिडिक बंध और पेप्टाइड बंध में क्या अंतर है ?
- (ii) कौन-से ऐमीनो अम्ल, आवश्यक ऐमीनो अम्ल कहलाते हैं ?
- (iii) प्रोटीनों की सामान्य प्रकार की द्वितीयक संरचनाएँ क्या हैं ? किन्हीं दो बलों के नाम लिखिए जो प्रोटीन की द्वितीयक और तृतीयक संरचनाओं को स्थायित्व प्रदान करते हैं।

अथवा

(iii) एक उदाहरण सहित प्रोटीन के विकृतीकरण को परिभाषित कीजिए । विकृतीकरण के दौरान प्रोटीनों की किन संरचनाओं की जैविक सक्रियता नष्ट हो जाती है ?


1


1

2

(iii) Complete the following reactions giving main products:

 $2 \times 1 = 2$

32. Living systems are made up of various complex biomolecules like carbohydrates, proteins, nucleic acids, lipids, etc. Carbohydrates are optically active polyhydroxy aldehydes or ketones or molecules which provide such units on hydrolysis. They are broadly classified into three groups — monosaccharides, oligosaccharides and polysaccharides. Monosaccharides are held together by glycosidic linkages to form disaccharides like sucrose, maltose or polysaccharides like starch and cellulose.

Another biomolecule: proteins are polymers of α -amino acids which are linked by peptide bonds. Ten amino acids are called essential amino acids. Structure and shape of proteins can be studied at four different levels i.e. primary, secondary, tertiary and quaternary, each level being more complex than the previous one.

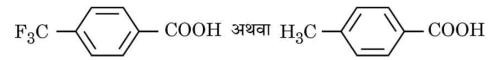
Answer the following questions:

- (i) What is the difference between a glycosidic linkage and peptide linkage?
- (ii) Which amino acids are called essential amino acids?
- (iii) What are the common types of secondary structures of proteins? Write any two forces which stabilise the secondary and tertiary structures of protein.

OR.

(iii) Define denaturation of protein with an example. During denaturation which structures of protein lose their biological activity?

2


1

1

खण्ड ङ

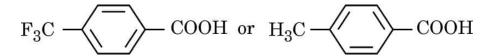
33. (क) बेन्ज़ैल्डिहाइड की 2,4-डाइनाइट्रोफ़ेनिलडाइड्रैज़ोन की संरचना खींचिए।

(ख) निम्नलिखित युगल में से कौन-सा अम्ल अधिक प्रबल है ?

- (ग) रोज़ेनमुंड अपचयन से संबद्ध रासायनिक समीकरण लिखिए।
- (घ) ऐल्डिहाइडों और कीटोनों के α -हाइड्रोजन परमाणुओं की प्रकृति अम्लीय क्यों होती है ?
- (ङ) बेन्ज़ैल्डिहाइड और बेन्ज़ोइक अम्ल में विभेद करने के लिए रासायनिक परीक्षण $5 \times 1 = 5$
- **34.** (क) (i) 298 K पर निम्नलिखित सेल का विद्युत्-वाहक बल (emf) परिकलित कीजिए :

Al (s) \mid Al³⁺ (0·001 M) \mid Ni²⁺ (0·1 M) \mid Ni (s) [दिया गया है : $E_{Al^{3+}/Al}^{\circ} = -1·66$ V, $E_{Ni^{2+}/Ni}^{\circ} = -0·25$ V, log 10 = 1]

(ii) एक आलेख की सहायता से व्याख्या कीजिए कि प्रबल विद्युत्-अपघट्यों की भाँति दुर्बल विद्युत्-अपघट्य के लिए $\Lambda_{\rm m}^{\circ}$, मोलर चालकता $(\Lambda_{\rm m})$ को $C^{1/2}$ के विपरीत प्राप्त वक्र के बिहर्वेशन से ज्ञात करना संभव क्यों नहीं है । 3+2=5


अथवा

- (ख) (i) NH_4^+ और Cl^- आयन की मोलर चालकताएँ क्रमशः $73.8~\mathrm{S~cm}^2~\mathrm{mol}^{-1}$ और $76.2~\mathrm{S~cm}^2~\mathrm{mol}^{-1}$ हैं। $0.1~\mathrm{M~NH_4Cl}$ की चालकता $1.29 \times 10^{-2}~\mathrm{S~cm}^{-1}$ है। इसकी मोलर चालकता और वियोजन मात्रा परिकलित कीजिए।
 - (ii) 298 K पर निम्नलिखित अभिक्रिया के लिए अर्ध-सेल विभव परिकलित कीजिए:

$$Zn^{2+} + 2e^- \longrightarrow Zn$$
 यदि $[Zn^{2+}] = 0.1 \, \mathrm{M}$ और $E_{Zn^{2+}/Zn}^{\circ} = -0.76 \, \mathrm{V}$ है । $3+2=5$

SECTION E

- **33.** (a) Draw structure of the 2,4-dinitrophenylhydrazone of benzaldehyde.
 - (b) Which acid of the following pair is a stronger acid?

- (c) Write the chemical equation involved in Rosenmund's reduction.
- (d) Why are α -hydrogen atoms of aldehydes and ketones acidic in nature?
- (e) Write a chemical test to distinguish between Benzaldehyde and Benzoic acid. $5\times 1=5$
- 34. (a) (i) Calculate the emf of the following cell at 298 K:

 Al (s) $|A|^{3+}$ (0.001 M) $|N|^{2+}$ (0.1 M) |N| (s)

 [Given: $E_{A|^{3+}/A|}^{\circ} = -1.66 \text{ V}, E_{N|^{2+}/N|^{3}}^{\circ} = -0.25 \text{ V}, \log 10 = 1$]
 - (ii) With the help of a graph explain why it is not possible to determine $\Lambda_{\rm m}^{\circ}$ for a weak electrolyte by extrapolating the molar conductivity ($\Lambda_{\rm m}$) versus $C^{1/2}$ curve as for strong electrolyte. 3+2=5

OR

- (b) (i) The molar conductivities of NH_4^+ and Cl^- ion are $73.8~\mathrm{S}~\mathrm{cm}^2~\mathrm{mol}^{-1}$ and $76.2~\mathrm{S}~\mathrm{cm}^2~\mathrm{mol}^{-1}$ respectively. The conductivity of $0.1~\mathrm{M}~\mathrm{NH}_4\mathrm{Cl}$ is $1.29\times10^{-2}~\mathrm{S}~\mathrm{cm}^{-1}$. Calculate its molar conductivity and degree of dissociation.
 - (ii) Calculate the half-cell potential at 298 K for the reaction

$$Zn^{2+} + 2e^- \longrightarrow Zn$$
 if $[Zn^{2+}] = 0.1$ M and $E^{\circ}_{Zn^{2+}/Zn} = -0.76$ V. $3+2=5$

- **35.** (क) (i) निम्नलिखित के लिए कारण दीजिए :
 - (1) Zn^{2+} लवण रंगहीन हैं जबिक Ni^{2+} लवण रंगीन होते हैं ।
 - (2) Cr^{2+} एक प्रबल अपचायक है ।
 - (3) संक्रमण धातुएँ तथा इनके यौगिक उत्प्रेरकीय सक्रियताएँ दर्शाति हैं।
 - (ii) (1) I^- आयन, और (2) Fe^{2+} आयन के साथ अम्लीय माध्यम में MnO_4^- की ऑक्सीकारक क्रिया के लिए आयनिक समीकरण लिखिए। 3+2=5

अथवा

- (ख) (i) 3d श्रेणी की संक्रमण धातुओं के दो ऑक्सो-धातु ऋणायनों के नाम लिखिए जिसमें धातु वर्ग संख्या के समान ऑक्सीकरण अवस्था प्रदर्शित करती है।
 - (ii) $K_2Cr_2O_7$ विलयन पर pH में वृद्धि का क्या प्रभाव होता है ?
 - (iii) Cu+ जलीय विलयन में स्थायी क्यों नहीं होता है ?
 - (iv) लैन्थेनॉयड श्रेणी के एक सदस्य का नाम बताइए जो +4 ऑक्सीकरण अवस्था दर्शाने के लिए भली-भाँति जाना जाता है।
 - (v) 3d श्रेणी के दो तत्त्वों के नाम लिखिए जो असंगत इलेक्ट्रॉनिक विन्यास प्रदर्शित करते हैं। $5 \times 1 = 5$

- **35.** (a) (i) Account for the following:
 - (1) Zn²⁺ salts are colourless while Ni²⁺ salts are coloured.
 - (2) Cr^{2+} is a strong reducing agent.
 - (3) Transition metals and their compounds show catalytic activities.
 - (ii) Write the ionic equations for the oxidizing action of MnO_4^- in acidic medium with
 - (1) I^- ion, and
 - (2) Fe^{2+} ion.

3+2=5

OR

- (b) (i) Name two oxometal anions of the 3d series of the transition metals in which the metal exhibits the oxidation state equal to its group number.
 - (ii) What is the effect of increasing pH on a solution of $K_2Cr_2O_7$?
 - (iii) Why is Cu⁺ not stable in aqueous solution?
 - (iv) Name a member of Lanthanoid series which is well-known to exhibit +4 oxidation state.
 - (v) Name two elements of 3d series which show anomalous electronic configuration. $5\times 1=5$

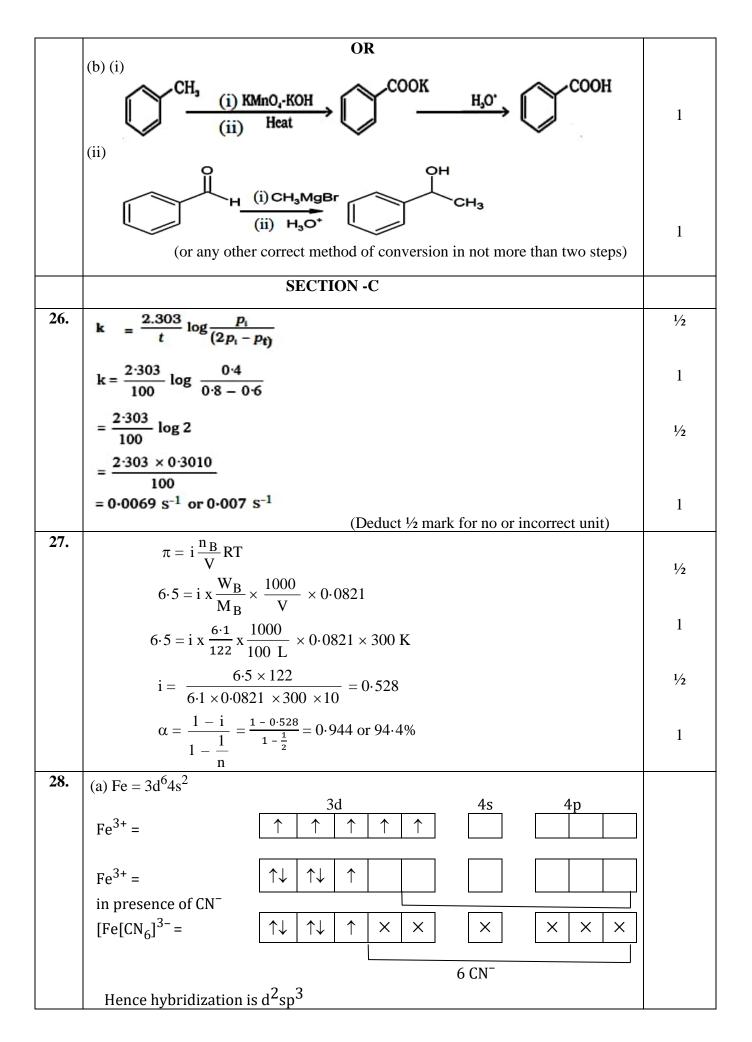
Marking Scheme

Strictly Confidential
(For Internal and Restricted use only)
Senior Secondary School Examination, 2023
SUBJECT: CHEMISTRY (043)(56/4/2)

	SUBJECT : CHEMISTRY (043)(56/4/2)			
Gen	eral Instructions: -			
1	You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.			
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."			
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-XII, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.			
4	The Marking scheme carries only suggested value points for the answers These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.			
5	The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.			
6	Evaluators will mark($$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.			
7	If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.			
8	If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.			

9	If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
11	A full scale of marks(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
13	 Ensure that you do not make the following common types of errors committed by the Examiner in the past:- Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

MARKING SCHEME


Senior Secondary School Examination, 2023

CHEMISTRY (Subject Code–043)

[Paper Code: 56/4/2]

Q. No.	EXPECTED ANSWER / VALUE POINTS	Marks
	SECTION-A	
1.	(b)	1
2.	(d)	1
3.	(a)	1
4.	(c)	1
5.	(c)	1
6.	(a)	1
7.	(a)	1
8.	(b)	1
9.	(d)	1
10.	(b)	1
11.	(a)	1
12.	(c)	1
13.	(b)	1
14.	(d)	1
15.	(a)	1
16.	(c)	1
17.	(a)	1
18.	(b)	1
	SECTION-B	
19.	 (a) Positive deviation, On adding acetone, some of the hydrogen bonds of ethanol are broken down causing an increase in vapour pressure / the ethanol-acetone shows weaker 	1
	interactions than pure ethanol-ethanol and acetone-acetone interactions.	1
	OR (b)	
	A liquid binary mixture that distills at constant temperature without undergoing a change in composition.	1

	T	1
	Maximum boiling azeotrope 68% HNO ₃ + 32% H ₂ O	1/2 1/2
20.	A = CH ₃ CH ₃ CH ₃	1
	B= H ₂ C CH ₃ OR CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	1/2
	CH ₃ CH ₃ OR H ₂ CH ₃ CH ₃ CH ₃	1/2
21.	$\log k = \log A - \frac{Ea}{2.303 \text{ RT}}$	1/2
	$-\frac{\text{Ea}}{} = -2 \times 10^4 \text{ K}$	1/2
	2.303 R $E_a = 2.303 \times 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \text{ x } 2 \times 10^4 \text{ K}$	1/2
	$E_a = 2.830 \times 3.8314 \text{ J K} \text{mor} \text{x 2 x 10} \text{K}$ $E_a = 3.830 \times 10^5 \text{ J mol}^{-1}$	1/2
22.	(a) Fuel cell (b) Lead storage (c) Mercury cell (d) Dry cell	½ x 4
23.	(a) Triamminetriaquachromium (III) chloride (b) Potassium trioxalatoaluminate (III)	1 1
24.	Because in (a) alkyl halide is 1° while in (b) p-nitrobromobenzene is less reactive	1
	towards nucleophilic substitution with CH ₃ ONa due to the formation of partial double bond between C and Br.	
25.	(a) (i) — CH ₂ OH + — COONa	1
	(ii) NNHCONH ₂	1

	(c) Cl ⁻ being a weak field ligand does not cause pairing of electrons and hence [NiCl ₄] ²⁻ is paramagnetic while CO being a strong field ligand causes pairing of electrons therefore [Ni(CO) ₄] is diamagnetic.	1 x 3
	(d) Linkage isomerism. Example, CN - / NO ₂ / SCN -	
29.	(a) Due to the resonance stabilisation of benzyl carbocation.	1
	(b) Because it is a racemic mixture / it contains an equimolar mixture of the two enantiomers of butan-2-ol.	1
	(c) Because it forms a poisonous gas phosgene in presence of air and light.	1
30.	(a) (i)	
	$3 \text{ CH}_3 - \text{CH} = \text{CH}_2 \xrightarrow{B_2 \text{H}_6} (\text{CH}_3 - \text{CH}_2 - \text{CH}_2)_3 \text{B}$	1
	$\frac{\text{H}_2\text{O}_2/\text{OH}^-}{\longrightarrow} 3 \text{ CH}_3 - \text{CH}_2 - \text{CH}_2\text{OH} + \text{B(OH)}_3$	
	(ii)	
	OH + CH ₃ Br	1
	(iii) Because of electron-withdrawing nature or -I effect of – NO ₂ group / p-	
	nitrophenoxide ion is more stable than phenoxide ion / due to more effective	1
	delocalization of negative charge in p-nitrophenoxide ion.	
	OR (b) (i)	
	(b) (i) OH Conc. HNO_3 OH NO_2	1
	(ii)	
	OH OH	
	(i) CHCl ₃ + aq NaOH CHO	1
	(ii) Because NaOCH ₃ acts as a strong base which leads to elimination reactions.	1
	SECTION-D	1
31.	(i) $(C_2H_5)_2NH < (C_2H_5)_3N < C_2H_5NH_2$ (ii) Due to the protonation of aniline to form anilinium ion which makes it	1
	deactivating and meta-directing. (iii)	1
	A = СООН	1
	1	1

		1/2
	$\mathbf{B} = \bigcirc CONH_2$	/2
	$C = NH_2$	1/2
	OR	
	(1) NH ₂	
	Br Br	1
	(2)	
	NO2	
		1
32.	(i) Peptide linkage : A linkage formed when two amino acids are joined through	1
32.	- CONH – bond.	1
	Glycosidic linkage: When two monosaccharides are joined through oxygen atom.	
	(or any other correct difference)	
	(ii) Those which are not synthesised in the body and must be obtained through diet. (iii)	1
	α -helix and β -pleated sheet.	1
	Hydrogen bond, van der Waals forces, disulphide linkages, electrostatic force of	
	attraction. (any two)	1/2 , 1/2
	OR (iii) Loss of biological activity when native form of protein is subjected to change in	
	temperature, pH, etc. Example, curdling of milk (or any other suitable example)	1
	Secondary and tertiary structure lose their biological activity.	1
	SECTION-E	1
33.	(a)	
	NO ₂	
	$C = NNH \longrightarrow NO_2$	1
	(b)	1
	F ₃ C — COOH	1
		1
	(c)	
	O	
	CHO CHO	
	Pd - BaSO ₄	1
	(or any other correct chemical equation) (d) Due to resonance stabilization of conjugate base enolate ion.	
	(a) Due to resonance stabilization of conjugate base chorate fon.	1
	(e) On adding NaHCO ₃ solution, Benzoic acid gives effervescence of CO ₂ whereas	
	Benzaldehyde does not.	1
	(or any other suitable chemical test)	

34.	(a) (i)	
	$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.059}{6} \log \frac{[A1^{3+}]^2}{[Ni^{2+}]^3}$	
	6 [Ni ²⁺] ³	1
	0.059 , [0.001] ²	
	$E_{cell} = [-0.25 + 1.66] - \frac{0.059}{6} \log \frac{[0.001]^2}{[0.1]^3}$	
	$=1.41-\frac{0.059}{6}\log 10^{-6+3}$	1
	0.059	1
	$=1.41+\frac{0.059}{6}\times3$	
	= 1.41 +0.0295	
	= 1·4395 V	1
	(Deduct ½ mark for no or incorrect unit)	
	(b) (i)	
	Λ _m Weak electrolyte	
	√C →	1
	VC ——	
	(ii) As seen from the curve, it runs parallel to the y-axis. So, even on extrapolation,	1
	it will not intercept, hence Λ°_{m} cannot be obtained.	
	OR	
	(b)(i)	
	$\Lambda_{\text{m}^{\circ}}$ (NH ₄ Cl) = 73·8 + 76·2 = 150·0 S cm ² mol ⁻¹	
	m Conquisition	1/4
	$\Lambda_{\rm m} = \frac{\rm k}{\rm c} \times 1000 \rm S cm^2 mol^{-1}$	1/2
	1.29×10^{-2}	1/2
	$\Lambda_{\rm m} = \frac{1.29 \times 10^{-2}}{0.1} \times 1000 \rm S cm^2 mol^{-1}$	
		1/2
	$\Lambda_{\rm m} = 1.29 \times 10^2 = 129 {\rm S cm}^2 {\rm mol}^{-1}$	
	$\alpha - \frac{\Lambda_{\rm m}}{2}$	1/2
	$\alpha = \frac{\Lambda_{\rm m}}{\Lambda_{\rm m^o}}$	
		1/2
	$\alpha = \frac{129}{150} = 0.86$	
		1/2
	(ii)	/2
	0.059	
	$E_{Zn^{2+} Zn} = E_{Zn^{2+}/Zn}^{\circ} - \frac{0.059}{2} \log \frac{1}{[Zn^{2+}]}$	
	$\frac{2n}{2} \frac{2n}{2} \left[\frac{2n}{2} \right]$	1/2
	0.059 1	
	$E_{Zn^{2+} Zn} = -0.76 \text{ V} - \frac{0.059}{2} \log \frac{1}{0.1}$	
	2 0.2	1/
	$E_{Zn^{2+} Zn} = -0.76 \text{ V} = 0.0295$	1/2
	= - 0.7895 V	
	- 0.7073 v	1

35.	(a) (i) (1) Because of no unpaired electron in d-orbitals in Zn ²⁺ whereas, Ni ²⁺ has 2 unpaired electrons in d-orbitals / Ni ²⁺ shows d-d transition while Zn ²⁺ does not. (2) Because Cr is more stable in + 3 oxidation state due to stable t _{2g} ³ configuration. (3) Because of their ability to show multiple or variable oxidation states / ability to form complex / provide larger surface area for the reactants. (ii) (1) 2 MnO ₄ ⁻ + 10 I ⁻ + 16 H ⁺ \top 2 Mn ²⁺ + 5 I ₂ + 8 H ₂ O (2) MnO ₄ ⁻ + 5 Fe ²⁺ + 8 H ⁺ \top Mn ²⁺ + 5 Fe ³⁺ + 4 H ₂ O	1 1 1 1
	(b) (i) Dichromate ion/ Chromate ion / Permanganate ion (ii) Changes to CrO_4^{2-}/K_2CrO_4 (iii) Cu^+ ion (aq.) undergoes disproportionation to Cu^{2+} (aq.) and $Cu/2$ Cu^+ (aq.) $\longrightarrow Cu^{2+}$ (aq.) + $Cu(s)$ (iv) Cerium / Terbium (v) Chromium, Copper	1 x 5

* * *