

Series: WXYZ/S

 $SET \sim 1$

प्रश्न-पत्र कोड $_{ ext{Q.P. Code}}$ $oldsymbol{5}$

रोल नं. Roll No.

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Čandidates must write the Q.P. Code on the title page of the answer-book.

(I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं।
Please check that this question paper contains 23 printed pages.

- (II) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
 - Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- (III) कृपया जाँच कर लें कि इस प्रश्न-पत्र में **33** प्रश्न हैं। Please check that this question paper contains **33** questions.
- (IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथा स्थान पर प्रश्न का क्रमांक अवश्य लिखें।

Please write down the Serial Number of the question in the answer-book at the given place before attempting it.

(V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।

15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे

Time allowed: 3 hours

अधिकतम अंक : **70** Maximum Marks : **70**

#1#

सामान्य निर्देश :

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में **33** प्रश्न हैं। **सभी** प्रश्न **अनिवार्य** हैं।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **खण्ड क, ख, ग, घ** एवं **ङ**।
- (iii) खण्ड क प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) **खण्ड ख** प्रश्न संख्या **17** से **21** तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न **2** अंकों का है।
- (v) **खण्ड ग** प्रश्न संख्या **22** से **28** तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न **3** अंकों का है।
- (vi) खण्ड u प्रश्न संख्या 29 तथा 30 केस-आधारित प्रश्न हैं। प्रत्येक प्रश्न 4 अंकों का है।
- (vii) खण्ड ङ प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड क के अतिरिक्त अन्य सभी खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग **वर्जित** है।

खण्ड क

प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के 1 अंक के प्रश्न हैं।

 $16 \times 1 = 16$

- 1. चालकता सेल के इलेक्ट्रोड इससे बने होते हैं:
 - (A) सिल्वर
 - (B) कॉपर
 - (C) प्लैटिनम
 - (D) ज़िंक
- 2. 298 K पर Ar(g), $CO_2(g)$, HCHO(g) और $CH_4(g)$ के लिए K_H के मान क्रमश: 40.32, 1.68, 1.84×10^{-5} और 0.416 kbar हैं। जब इन गैसों को उनकी घुलनशीलता के बढ़ते हुए क्रम में व्यवस्थित किया जाता है, तो सही क्रम है:
 - (A) $HCHO < CH_4 < CO_2 < Ar$
 - $(B) \qquad \text{HCHO} < \text{CO}_2 < \text{CH}_4 < \text{Ar}$
 - (C) $Ar < CO_2 < CH_4 < HCHO$
 - (D) $Ar < CH_4 < CO_2 < HCHO$

General Instructions:

Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into **five** sections **Section A**, **B**, **C**, **D** and **E**.
- (iii) **Section A** questions number **1** to **16** are multiple choice type questions. Each question carries **1** mark.
- (iv) **Section B** questions number **17** to **21** are very short answer type questions. Each question carries **2** marks.
- (v) **Section C** questions number **22** to **28** are short answer type questions. Each question carries **3** marks.
- (vi) **Section D** questions number **29** and **30** are case-based questions. Each question carries **4** marks.
- (vii) **Section E** questions number **31** to **33** are long answer type questions. Each question carries **5** marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the sections except Section A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculator is **not** allowed.

SECTION A

Questions no. 1 to 16 are Multiple Choice type Questions, carrying 1 mark each. $16 \times 1=16$

- **1.** A conductivity cell contains electrodes made up of :
 - (A) Silver
 - (B) Copper
 - (C) Platinum
 - (D) Zinc
- 2. The value of K_H at 298 K for Ar(g), $CO_2(g)$, HCHO(g) and $CH_4(g)$ are 40.32, 1.68, 1.84×10^{-5} and 0.416 kbar respectively. When these gases are arranged in increasing order of solubility, the correct order is :
 - (A) $HCHO < CH_4 < CO_2 < Ar$
 - (B) $HCHO < CO_2 < CH_4 < Ar$
 - $({\rm C}) \qquad {\rm Ar} < {\rm CO}_2 < {\rm CH}_4 < {\rm HCHO}$
 - $(D) \qquad Ar < CH_4 < CO_2 < HCHO$

- **3.** निम्नलिखित कार्बनिक यौगिकों में से कौन-सा कक्ष ताप पर ल्यूकास अभिकर्मक से अभिक्रिया करेगा ?
 - (A) $CH_2 = CH CH_2OH$
 - (B) CH₃CH₂CH₂OH
 - ${\rm (C)} \quad {\rm C_6H_5CH_2OH}$
 - (D) $(CH_3)_3COH$
- 4. निम्नलिखित यौगिकों में से फ्रेऑन को पहचानिए :
 - $(A) \quad \operatorname{CCl}_2F_2$
 - (B) CCl_2Br_2
 - (C) $CH_2Cl CHCl_2$
 - (D) $CHCl_2 CHCl_2$
- 5. यदि किसी प्रथम कोटि अभिक्रिया की अर्ध-आयु 1386 s है, तो इस अभिक्रिया का वेग स्थिरांक है :
 - (A) $0.5 \times 10^{-2} \text{ s}^{-1}$
 - (B) $0.5 \times 10^{-3} \text{ s}^{-1}$
 - (C) $5 \times 10^{-2} \, \mathrm{s}^{-1}$
 - (D) $5 \times 10^{-3} \text{ s}^{-1}$
- **6.** 'A', 'B' और 'C' के मानक इलेक्ट्रोड विभव क्रमश: $+0.68~\mathrm{V}, -2.54~\mathrm{V}$ और $-0.50~\mathrm{V}$ हैं। उनकी अपचायक क्षमता का क्रम है:
 - (A) A > B > C
 - (B) A > C > B
 - (C) B > C > A
 - (D) C > B > A
- **7.** ग्लूकोस, ${
 m Br}_2$ जल के साथ अभिक्रिया करके देता है :
 - (A) ग्लूकोनिक अम्ल
 - (B) हैक्सेनॉइक अम्ल
 - (C) सैकैरिक अम्ल
 - (D) ग्लाइकोलिक अम्ल

- **3.** Out of the following organic compounds, the one which will react with Lucas reagent at room temperature is:
 - (A) $CH_2 = CH CH_2OH$
 - (B) $CH_3CH_2CH_2OH$
 - (C) $C_6H_5CH_2OH$
 - (D) $(CH_3)_3COH$
- **4.** Identify the Freon from the following compounds :
 - (A) CCl_2F_2
 - (B) CCl_2Br_2
 - $(C) \qquad CH_2Cl-CHCl_2$
 - (D) $CHCl_2 CHCl_2$
- **5.** If the half-life period of a first order reaction is 1386 s, then the rate constant of this reaction is :
 - (A) $0.5 \times 10^{-2} \text{ s}^{-1}$
 - (B) $0.5 \times 10^{-3} \text{ s}^{-1}$
 - (C) $5 \times 10^{-2} \text{ s}^{-1}$
 - (D) $5 \times 10^{-3} \text{ s}^{-1}$
- **6.** The standard electrode potential of 'A', 'B' and 'C' are + 0.68 V, 2.54 V and 0.50 V respectively. The order of their reducing power is :
 - (A) A > B > C
 - (B) A > C > B
 - (C) B > C > A
 - (D) C > B > A
- **7.** Glucose on reaction with Br_2 water gives :
 - (A) Gluconic acid
 - (B) Hexanoic acid
 - (C) Saccharic acid
 - (D) Glycolic acid

8.	एक य	ाणिक CaCl_2 . $\operatorname{6H}_2\operatorname{O}$ जल में पूर्णतया वियोजित हो जाता है । वान्ट हॉफ गुणांक (i) है :
	(A)	9
	(B)	6
	(C)	4
	(D)	3
9.	+1 अं	ौर +2 दोनों ऑक्सीकरण अवस्थाएँ दर्शाने वाला संक्रमण तत्त्व है :
	(A)	Sc
	(B)	Mn
	(C)	Cu
	(D)	Zn
10.	निम्नि	लेखित हैलाइडों में से किसमें $\mathrm{C}_{\mathrm{sp}^2}$ – X आबंध उपस्थित है ?
	(A)	ऐल्किल हैलाइड
	(B)	ऐलिल हैलाइड
	(C)	बेन्जिल हैलाइड
	(D)	वाइनिल हैलाइड
11.	निम्नि	नेखित ऐमीनों में से किसका क्वथनांक उच्चतम है ?
	(A)	2,2-डाइमेथिल प्रोपेनेमीन
	(B)	3-मेथिलब्यूटेनेमीन
	(C)	2-मेथिलब्यूटेनेमीन

(D)

- (A) मेथिल क्लोराइड और आयोडोबेन्जीन
- (B) बेन्ज़ीन और मेथैनॉल

पेन्टेनेमीन

- (C) आयोडोबेन्ज़ीन और मेथैनॉल
- (D) फ़ीनॉल और मेथिल आयोडाइड

8.		mpound $CaCl_2$. $6H_2O$ undergoes complete dissociation in water. The
	Van'	t Hoff factor (i) is:
	(A)	9
	(B)	6
	(C)	4
	(D)	3
9.	The	transition element which shows both +1 and +2 oxidation states is :
	(A)	Sc
	(B)	Mn
	(C)	Cu
	(D)	Zn
10.	Whic	ch one of the following halides contains $C_{sp}^2 - X$ bond ?
	(A)	Alkyl halide
	(B)	Allyl halide
	(C)	Benzyl halide
	(D)	Vinyl halide
11.	Whic	ch of the following amines has the highest boiling point?
	(A)	2,2-Dimethyl propanamine
	(B)	3-Methylbutanamine
	(C)	2-Methylbutanamine
	(D)	Pentanamine
12.	Whe	n phenyl methyl ether is heated with HI, it produces :
	(A)	Methyl chloride and Iodobenzene
	(B)	Benzene and Methanol
	(C)	Iodobenzene and Methanol
	(D)	Phenol and Methyl iodide

प्रश्न संख्या 13 से 16 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए।

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या **नहीं** करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (D) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है ।
- 13. अभिकथन (A) : ऐक्टिनॉयड ऑक्सीकरण अवस्थाओं का वृहद परास दर्शाते हैं। कारण (R) : ऐक्टिनॉयड रेडियोसक्रिय प्रकृति के होते हैं।
- **15.** अभिकथन (A) : अभिक्रिया $H_2 + Br_2 \to 2HBr$ की आण्विकता 2 प्रतीत होती है। कारण (R) : दी गई प्राथिमक अभिक्रिया में अभिकारकों के दो अणु सिम्मिलत हैं।
- 16. अभिकथन (A): p-नाइट्रोफ़ीनॉल की तुलना में p-मेथॉक्सीफ़ीनॉल प्रबलतर अम्ल है।
 कारण (R): मेथॉक्सी समूह इलेक्ट्रॉन-विमोचक (दाता) समूह है जबिक नाइट्रो समूह इलेक्ट्रॉन-अपनयक (प्रत्याहार्य) समूह है।

For Questions number 13 to 16, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- **13.** Assertion (A): Actinoids show a wide range of oxidation states.
 - *Reason (R)*: Actinoids are radioactive in nature.
- 14. Assertion (A): Presence of $-NO_2$ group at ortho or para position increases the reactivity of haloarenes towards nucleophilic substitution reactions.
 - Reason(R): Nitro group decreases the electron density over the benzene ring.
- **15.** Assertion (A): The molecularity of the reaction $H_2 + Br_2 \rightarrow 2HBr$ appears to be 2.
 - Reason(R): Two molecules of the reactants are involved in the given elementary reaction.
- **16.** *Assertion (A)* : p-methoxyphenol is a stronger acid than p-nitrophenol.
 - Reason (R): Methoxy group is electron-donating group whereas nitro group is electron-withdrawing.

		ख्रण्ड ख	
17.	निम्नि	तेखित के मध्य एक-एक अंतर दीजिए :	2
	(क)	स्टार्च और सेलुलोस	
	(ख)	प्रोटीन की प्राथमिक और द्वितीयक संरचना	
18.	के ∧् विद्युत	ने 'A' और 'B' दो विद्युत-अपघट्यों के विलयनों का तनुकरण किया। उसने प्रेक्षित किया कि 'A' _m में 28 गुना वृद्धि हुई जबकि 'B' के \bigwedge_m में $1\cdot8$ गुना वृद्धि हुई। इन दोनों में से कौन-सा प्रबल -अपघट्य है ? 'A' और 'B' के व्यवहार की आलेखीय निरूपण से व्याख्या करके अपने उत्तर का त्य दीजिए।	2
19.	(ক)	ईंधन सेल की परिभाषा लिखिए। सामान्य सेल की अपेक्षा ईंधन सेल के दो लाभ लिखिए।	2
		अथवा	
	(ख)	निम्नलिखित में से प्रत्येक के लिए विद्युत-अपघटन के उत्पादों की प्रागुक्ति कीजिए :	2
		$ m (i)$ प्लैटिनम इलेक्ट्रोडों के साथ $ m H_2SO_4$ का तनु विलयन	
		(ii) प्लैटिनम इलेक्ट्रोडों के साथ CuCl_2 का जलीय विलयन	
20.	(ক)	ऐनिलीन और N,N-डाइमेथिलऐनिलीन में रसायनत: विभेद करने के लिए प्रयुक्त अभिक्रिया का नाम लिखिए।	
	(평)	सामान्य परिस्थितियों में क्लोरोबेन्ज़ीन के ऐमोनी अपघटन के द्वारा ऐनिलीन का विरचन क्यों नहीं किया जा सकता है ?	2
21.	कारण जब :	देते हुए व्याख्या कीजिए कि किसी दी गई अभिक्रिया का अभिक्रिया वेग कैसे प्रभावित होगा	2
	(ক)	ताप जिस पर अभिक्रिया हो रही थी उसे घटा दिया जाए।	
	(ख)	एक उत्प्रेरक मिला दिया जाए।	

SECTION B

Give	one point of difference between the following:	2
(a)	Starch and Cellulose	
(b)	Primary and Secondary structure of protein	
Visha	a diluted the solutions of two electrolytes 'A' and 'B'. She observed that	
$\Lambda_{\rm m}$	of 'A' increased 28 times whereas $\Lambda_{\rm m}$ of 'B' increased 1·8 times. Which	
of the	e two is a strong electrolyte? Justify your answer by graphically	
expla	ining the behaviour of 'A' and 'B'.	2
(a)	Define Fuel cell. Write two advantages of fuel cell over ordinary	
	cell.	2
	OR	
(b)	Predict the products of electrolysis in each of the following:	2
	(i) A dilute solution of H_2SO_4 with platinum electrodes	
	(ii) An aqueous solution of CuCl_2 with platinum electrodes	
(a)	Name the reaction which can be used to distinguish chemically	
	between aniline and N,N-dimethylaniline.	
(b)	Why can aniline not be prepared by the ammonolysis of	
	chlorobenzene under normal conditions?	2
By gi	ving reasons, explain how the rate of the reaction for a given reaction	
will b	be affected when:	2
(a)	the temperature at which the reaction was taking place is decreased.	
(b)	a catalyst is added.	
	(a) (b) Visha \(\lambda_{\text{m}} of the explain of the	 (b) Primary and Secondary structure of protein Visha diluted the solutions of two electrolytes 'A' and 'B'. She observed that Λ_m of 'A' increased 28 times whereas Λ_m of 'B' increased 1-8 times. Which of the two is a strong electrolyte? Justify your answer by graphically explaining the behaviour of 'A' and 'B'. (a) Define Fuel cell. Write two advantages of fuel cell over ordinary cell. OR (b) Predict the products of electrolysis in each of the following: (i) A dilute solution of H₂SO₄ with platinum electrodes (ii) An aqueous solution of CuCl₂ with platinum electrodes (a) Name the reaction which can be used to distinguish chemically between aniline and N,N-dimethylaniline. (b) Why can aniline not be prepared by the ammonolysis of chlorobenzene under normal conditions? By giving reasons, explain how the rate of the reaction for a given reaction will be affected when: (a) the temperature at which the reaction was taking place is decreased.

खण्ड ग

- **22.** (क) संकुल $\left[\operatorname{Co(NH_3)_5(ONO)}\right]^{2+}$ का IUPAC नाम लिखिए।
 - (ख) $\left[\mathrm{Ni(CN)}_4\right]^{2-}$ का संकरण लिखिए और इसके चुम्बकीय व्यवहार की प्रागुक्ति कीजिए। $\left[\mathrm{VVHI}_4\right]^{2-}$ (परमाणु संख्या : $\mathrm{Ni}=28$)
 - (ग) दिए गए संकुल $\Big[\mathrm{Co(NH_3)}_6\Big]\Big[\mathrm{Cr(CN)}_6\Big]$ द्वारा किस प्रकार की समावयवता दर्शाई जाती है ?

3

3

3

3

3

23. निम्नलिखित के लिए कारण दीजिए:

- (क) तृतीयक-ब्यूटिल ब्रोमाइड, सोडियम मेथॉक्साइड के साथ अभिक्रिया करके मुख्य उत्पाद ऐल्कीन देता है न कि ईथर।
- (ख) ऑर्थो-नाइट्रोफ़ीनॉल भाप द्वारा वाष्पित होता है जबकि पैरा-नाइट्रोफ़ीनॉल नहीं।
- (ग) फ़ीनॉल की तुलना में ऐल्कोहॉल कम अम्लीय होता है।
- **24.** 298 K पर निम्नलिखित सेल का वि.वा. बल (emf) परिकलित कीजिए :

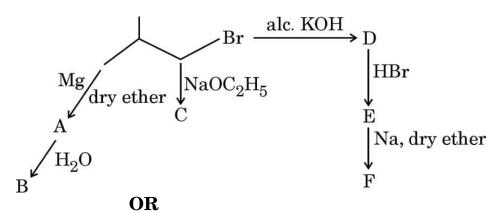
 $Mg(s) \mid Mg^{2+} \ (0.001 \ M) \parallel Cu^{2+} \ \ (0.0001 \ M) \mid Cu(s)$ दिया गया है : $E^0_{\frac{1}{Hcl}} = 2.71 \ V, \ log \ 10 = 1$

25. (क) निम्नलिखित अभिक्रिया अनुक्रम में 'A' से 'F' तक को पहचानिए :

 Mg । NaOC_2H_5 । $\operatorname{H_2O}$ । $\operatorname{H_2O}$ । $\operatorname{H_2O}$ । $\operatorname{H_2O}$) $\operatorname{H_2O}$ । $\operatorname{H_2O}$ । $\operatorname{H_2O}$) $\operatorname{H_2O}$) $\operatorname{H_2O}$ । $\operatorname{H_2O}$) $\operatorname{H_2O}$) $\operatorname{H_2O}$ । $\operatorname{H_2O}$) $\operatorname{H_2O}$)

- (ख) क्या होता है जब:
 - (i) मेथिल क्लोराइड को KCN के साथ अभिक्रियित किया जाता है ?
 - (ii) मेथिल ब्रोमाइड को शुष्क ऐसीटोन में NaI के साथ अभिक्रियित किया जाता है ?
 - (iii) मेथिल ब्रोमाइड को सिल्वर फ्ल्ओराइड के साथ अभिक्रियित किया जाता है ?

56/S/1


SECTION C

- **22.** (a) Write IUPAC name of the complex $\left[\text{Co(NH}_3)_5(\text{ONO)}\right]^{2+}$.
 - (b) Write the hybridization of $\left[Ni(CN)_4\right]^{2-}$ and predict its magnetic behaviour. [Atomic number : Ni = 28]
- **23.** Give reasons for the following:
 - (a) t-butyl bromide on reaction with sodium methoxide gives alkene as main product and not ether.
 - (b) *o*-nitrophenol is steam volatile while *p*-nitrophenol is not.
 - (c) Alcohol is less acidic than phenol.
- **24.** Calculate emf of the following cell at 298 K:

 $Mg(s)\,|\,Mg^{2+}\,(0{\cdot}001\,\,M)\|Cu^{2+}\,\,(0{\cdot}0001\,\,M)\,|\,Cu(s)$

Given: $E_{cell}^0 = 2.71 \text{ V}$, log 10 = 1

25. (a) Identify 'A' to 'F' in the following reaction sequence :

- (b) What happens when:
 - (i) methyl chloride is treated with KCN?
 - (ii) methyl bromide is treated with NaI in dry acetone?
 - (iii) methyl bromide is treated with silver fluoride?

3

3

3

3

3

26. एथेनेमीन, बेन्ज़ॉयल क्लोराइड के साथ अभिक्रिया करके एक उत्पाद 'X' निर्मित करता है। 'X' की संरचना और IUPAC नाम दीजिए। क्या 'X' हॉफमान ब्रोमामाइड निम्नीकरण अभिक्रिया दे सकता है ? यदि हाँ, तो उत्पाद की संरचना दीजिए। यदि नहीं, तो कारण दीजिए।

3

27. अभिक्रिया $A+2B \rightarrow C+2D$ की बलगतिकी अध्ययन के दौरान निम्नलिखित आँकड़े प्राप्त हुए :

प्रयोग	प्रारंभिक [A] (mol/L)	प्रारंभिक [B] (mol/L)	$ m C$ के विरचन का प्रारंभिक वेग $ m (M~min^{-1})$
1	0.10	0.10	3.0×10^{-4}
2	0.30	0.30	9.0×10^{-4}
3	0.10	0.30	3.0×10^{-4}
4	0.20	0.40	6.0×10^{-4}

प्रत्येक अभिकारक के सापेक्ष अभिक्रिया कोटि और अभिक्रिया की समग्र कोटि ज्ञात कीजिए। अभिक्रिया के लिए वेग नियम व्यंजक लिखिए।

3

28. निम्नलिखित प्रत्येक के लिए संभावित व्याख्या दीजिए :

3

- (क) ऐल्डिहाइडों के पृथक्करण व परिष्करण के लिए सोडियम हाइड्रोजन सल्फाइट प्रयुक्त होता है।
- (ख) 2,2,6-ट्राइमेथिलसाइक्लोहैक्सेनोन, सायनोहाइड्रिन नहीं बनाता है।
- (7) सेमीकार्बेज़ाइड का केवल एक $-NH_2$ समूह सेमीकार्बेज़ोन विरचन में प्रयुक्त होता है।

26. Ethanamine reacts with benzoyl chloride to form a product 'X'. Give the structure and IUPAC name of 'X'. Can 'X' undergo Hoffmann bromamide degradation reaction? If yes, then give the structure of the product. If no, then give reason.

3

27. The following data were obtained during the kinetic studies of the reaction :

$$A+2B \rightarrow C+2D$$

Experiment	Initial [A] (mol/L)	Initial [B] (mol/L)	Initial rate of formation of $C (M min^{-1})$
1	0.10	0.10	3.0×10^{-4}
2	0.30	0.30	9.0×10^{-4}
3	0.10	0.30	3.0×10^{-4}
4	0.20	0.40	6.0×10^{-4}

Determine the order of reaction with respect to each reactant and the overall order of the reaction. Write the rate law expression for the reaction.

3

28. Give plausible explanation for each of the following :

3

- (a) Sodium hydrogen sulphite is used for separation and purification of aldehydes.
- (b) 2,2,6-trimethylcyclohexanone does not form cyanohydrin.
- (c) Only one $-NH_2$ group of semicarbazide is involved in the formation of semicarbazone.

P.T.O.

खण्ड घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं। केस को ध्यानपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए।

29. संक्रमण धातुओं के संकुलों की एक विशिष्ट विशेषता उनके रंगों का विस्तृत (रेंज) परास है। इसका अर्थ है कि जब श्वेत प्रकाश प्रतिदर्श (sample) में से होकर बाहर निकलता है तो ये दृश्य स्पेक्ट्रम का कुछ भाग अवशोषित कर लेते हैं, अत: बाहर निकलने वाला प्रकाश अब श्वेत नहीं रहता। संकुल का रंग वह दिखाई देता है जो उसके द्वारा अवशोषित रंग का पूरक होता है। पूरक रंग अवशेष तरंगदैध्यं द्वारा उत्पन्न रंग होता है। यदि संकुल हरा प्रकाश अवशोषित करता है, तो यह लाल दिखाई पड़ता है। नीचे दी गई सारणी में प्रकाश के विभिन्न अवशोषित तरंगदैध्यं तथा प्रेक्षित रंग के मध्य संबंध दर्शाए गए हैं।

उपसहसंयोजन सत्ता	अवशोषित प्रकाश का	अवशोषित प्रकाश	उपसहसंयोजन सत्ता का
	तरंगदैर्ध्य (nm)	का रंग	रंग
$\left[\mathrm{CoCl}(\mathrm{NH_3})_5\right]^{2+}$	535	पीला	बैंगनी
$[\text{Co(NH}_3)_5(\text{H}_2\text{O})]^{3+}$	500	नीला-हरा	लाल
$[\text{Co(NH}_3)_6]^{3+}$	475	नीला	पीला-नारंगी
$[\mathrm{Co}(\mathrm{CN})_{6}]^{3-}$	310	पराबैंगनी	हल्का पीला
$\left[\mathrm{Cu}(\mathrm{H_2O})_4\right]^{2+}$	600	लाल	नीला
$\left[\mathrm{Ti}(\mathrm{H_2O})_6\right]^{3+}$	498	नीला-हरा	बैंगनी

- (क) स्पेक्ट्रमी रासायनिक श्रेणी क्या है ? $\Delta_{
 m t}$ और $\Delta_{
 m o}$ के मध्य संबंध लिखिए। 2
- (ख) (i) $[\mathrm{Co}(\mathrm{CN})_6]^{3-}$, $[\mathrm{Co}(\mathrm{NH}_3)_6]^{3+}$ और $[\mathrm{Cu}(\mathrm{H}_2\mathrm{O})_4]^{2+}$ को अवशोषित प्रकाश की तरंगदैर्ध्य के बढ़ते हुए क्रम में व्यवस्थित कीजिए।

1

1

अथवा

- (ख) (ii) क्रिस्टल क्षेत्र सिद्धांत के आधार पर ${f d}^5$ आयन का इलेक्ट्रॉनिक विन्यास लिखिए यदि $\Delta_{
 m o}$ < ${f P}$ है।
- (ग) क्रिस्टल क्षेत्र विपाटन ऊर्जा को परिभाषित कीजिए।

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

29. One of the most distinctive properties of transition metal complexes is their wide range of colours. This means that some of the visible spectrum is being removed from white light as it passes through the sample, so the light that emerges is no longer white. The colour of the complex is complementary to that which is absorbed. The complementary colour is the colour generated from the wavelength left over. If green light is absorbed by the complex, it appears red. Table given below, gives the relationship between different wavelengths of the light absorbed and the colour observed.

Coordination Entity	Wavelength of light absorbed (nm)	Colour of light absorbed	Colour of coordination entity
$\left[\mathrm{CoCl}(\mathrm{NH_3})_5\right]^{2+}$	535	Yellow	Violet
$[\text{Co(NH}_3)_5(\text{H}_2\text{O})]^{3+}$	500	Blue-green	Red
$[\text{Co(NH}_3)_6]^{3+}$	475	Blue	Yellow-orange
$[\mathrm{Co(CN)_6}]^{3-}$	310	Ultra-Violet (U.V.)	Pale Yellow
$\left[\mathrm{Cu}(\mathrm{H_2O})_4\right]^{2+}$	600	Red	Blue
$\left[\mathrm{Ti}(\mathrm{H_2O})_6\right]^{3+}$	498	Blue-green	Violet

- (a) What is spectrochemical series ? Write the relationship between Δ_t and Δ_o .
- (b) (i) Arrange $[\text{Co(CN)}_6]^{3-}$, $[\text{Co(NH}_3)_6]^{3+}$ and $[\text{Cu(H}_2\text{O})_4]^{2+}$ in increasing order of wavelength of light absorbed.

2

1

1

1

OR

- (b) (ii) On the basis of crystal field theory, write the electronic configuration of d^5 ion if $\Delta_o < P.$
- (c) Define crystal field splitting energy.

मधुमेह (डायबिटीज़) को नियंत्रित करने के लिए कार्बोहाइड्रेटों की मात्रा कम करें और प्रोटीन की मात्रा बढ़ाएँ, वृद्ध व्यक्तियों को कार्बोहाइड्रेटों की मात्रा अधिक कम करने की आवश्यकता है। एक औसत भारतीय 61 – 64% तक ऊर्जा प्राप्त करने के लिए कार्बोहाइड्रेटों से समृद्ध खाद्य पदार्थों का उपभोग करता है। जर्नल ऑफ डायबिटीज़ केयर में प्रकाशित एक अध्ययन में टाइप 2 मधुमेह (डायबिटीज़), जो पूरे विश्व में मृत्यु का एक मुख्य कारण है, के घटाव और रोकथाम के लिए इसे 49 – 56% कम करने की सिफारिश की है। अध्ययन में यह भी सुझाव दिया गया है कि कुल ऊर्जा खपत के लिए कार्बोहाइड्रेटों का अंतर्ग्रहण कम करने के साथ-साथ प्रोटीन के अंतर्ग्रहण में 14 – 20% वृद्धि की जानी चाहिए। कुल ऊर्जा खपत में वसा का योगदान 21 – 27% से अधिक नहीं होना चाहिए। सरल शब्दों में, किसी प्लेट में 50% फल तथा हरी सब्जियाँ, 25% कार्बोहाइड्रेट और 25% प्रोटीन समृद्ध खाद्य पदार्थ होने चाहिए। टाइप 1 डायबिटीज़ इन्सुलिन की कमी से होती है।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

- (क) कार्बोहाइड़ेटों के कोई दो प्रकार्य लिखिए।
- (ख) मोनोसैकेराइड क्या हैं?
- (ग) (i) विटामिन D की कमी से होने वाले हीनता जनित रोगों के नाम लिखिए।

अथवा

(ग) (ii) उस हॉर्मोन का नाम लिखिए जो रक्त में ग्लूकोस की मात्रा को सीमित रखता है।

खण्ड ङ

- **31.** (क) (i) पाइरोलुसाइट अयस्क (${
 m MnO}_2$) से पोटैशियम परमैंगनेट के विरचन में सिम्मिलित रासायनिक समीकरण लिखिए।
 - (ii) निम्नलिखित के लिए कारण दीजिए:
 - (I) Sc (परमाणु संख्या 21) के लवण श्वेत होते हैं।
 - $({
 m II})~~{
 m E}^{
 m o}_{{
 m Cu}^{2+}|{
 m Cu}}~$ धनात्मक है जबिक ${
 m E}^{
 m o}_{{
 m Mn}^{2+}|{
 m Mn}}$ ऋणात्मक है ।
 - (III) संक्रमण धातुओं की कणन एन्थैल्पी के मान उच्च होते हैं। 2+3

2

1

1

1

अथवा

30.

Reduce carbohydrates, increase protein to check diabetes, older people may need greater carbohydrates reduction. An average Indian derives 61 – 64% of energy from consumption of food rich in carbohydrates. A study published in the Journal of Diabetes Care has recommended reducing this to 49 – 56% for remission or prevention of Type 2 diabetes, one of the leading cause of death worldwide. Along with reducing carbohydrate intake, the study suggests that one should also increase protein intake up to 14 – 20% of the total energy consumption. Fat should contribute not more than 21 – 27% of the total energy consumption. In simple words, 50% of the plate should consist of fruits and green vegetables, 25% carbohydrates, 25% food rich in protein. Type 1 diabetes is due to deficiency of insulin.

Answer the following questions:

30.

(a) Write any two functions of carbohydrates.

2

(b) What are monosaccharides?

1

(c) (i) Write the name of the deficiency diseases caused due to the lack of Vitamin D.

1

OR.

(c) (ii) Name the hormone which maintains the glucose level within narrow limit in the blood.

1

SECTION E

- **31.** (a) (i) Write the chemical equations involved in the preparation of potassium permanganate from pyrolusite ore (MnO₂).
 - (ii) Give reasons for the following:
 - (I) Sc (Atomic No. 21) salts are white.
 - (II) $E^{o}_{Cu^{2+}\mid Cu}$ is positive whereas $E^{o}_{Mn^{2+}\mid Mn}$ is negative.
 - (III) Transition metals have high enthalpies of atomisation. 2+3

OR

- (ख) (i) निम्नलिखित रासायनिक समीकरणों को पूर्ण एवं संतुलित कीजिए :
 - (I) $\operatorname{Cr_2O_7}^{2-}(\operatorname{aq}) + \operatorname{H_2S}(g) + \operatorname{H}^+ \longrightarrow$
 - (II) $Cu^{2+}(aq) + I^{-}(aq) \longrightarrow$
 - (ii) कारण दीजिए:
 - (I) लैंथेनॉयडों के मिश्रण का पृथक्करण कठिन होता है।
 - (II) मैंगनीज़ की अपेक्षा क्रोमियम का गलनांक उच्चतर होता है।
 - (III) Z_n की दो से अधिक ऑक्सीकरण अवस्था प्राप्त करना कठिन होता है। 2+3

- **32.** (क) (i) परासरण दाब को परिभाषित कीजिए। यह अणुसंख्य गुणधर्म क्यों माना जाता है ?
 - (ii) 400 K पर दो शुद्ध द्रवों A और B के वाष्प दाब क्रमश: 450 और 700 mmHg हैं। द्रव मिश्रण का संघटन ज्ञात कीजिए यदि मिश्रण का कुल वाष्प दाब 600 mmHg है।

अथवा

- (ख) (i) फ़ीनॉल और ऐनिलीन को परस्पर मिलाए जाने पर राउल्ट नियम से किस प्रकार का विचलन अपेक्षित है ? मिश्रण के नेट आयतन और एन्थैल्पी में क्या परिवर्तन अपेक्षित है ?
 - (ii) $750 \; \mathrm{mmHg} \; \mathrm{qr} \; \mathrm{s}$ जल का क्वथनांक $99.48 \, ^{\circ}\mathrm{C} \;$ है। $500 \; \mathrm{g} \; \mathrm{s}$ ल में कितना सूक्रोस $(\mathrm{M} = 342 \; \mathrm{g} \; \mathrm{mol}^{-1}) \; \mathrm{He}$ लाया जाए ताकि यह $100 \, ^{\circ}\mathrm{C} \; \mathrm{qr} \; \mathrm{a}$ क्वथन करे ? [जल के लिए $\mathrm{K_b} = 0.52 \; \mathrm{K} \; \mathrm{kg} \; \mathrm{mol}^{-1}$] 2+3
- **33.** (क) (i) एक कार्बनिक यौगिक 'P' ($C_8H_{10}O$) ऑक्सीकृत होकर यौगिक 'Q' देता है। बेन्ज़ीन की निर्जल $AlCl_3$ की उपस्थिति में ऐसीटिल क्लोराइड के साथ अभिक्रिया द्वारा भी यौगिक 'Q' प्राप्त किया जा सकता है। 'Q' ने जलीय NaOH में I_2 के साथ अभिक्रिया करके 'R' और एक पीला यौगिक 'S' दिया। 'P', 'Q', 'R' और 'S' की पहचान कीजिए।
 - (ii) प्राप्त उत्पाद/उत्पादों की संरचना/संरचनाएँ लिखिए जब सांद्र KOH की उपस्थिति में बेन्ज़ैल्डिहाइड गरम किया जाता है। 4+1

अथवा

- ${\rm (b)}$ ${\rm (i)}$ Complete and balance the following chemical equations:
 - (I) $\operatorname{Cr_2O_7}^{2-}(\operatorname{aq}) + \operatorname{H_2S}(\operatorname{g}) + \operatorname{H}^+ \longrightarrow$
 - (II) $Cu^{2+}(aq) + I^{-}(aq) \longrightarrow$
 - (ii) Give reasons:
 - (I) Separation of mixture of lanthanoids is difficult.
 - (II) Chromium has higher melting point than manganese.
 - (III) It is difficult to obtain oxidation state greater than two for Zn.

2 + 3

- **32.** (a) (i) Define osmotic pressure. Why is it considered as a colligative property?
 - (ii) The vapour pressure of two pure liquids A and B at 400 K are 450 and 700 mmHg respectively. Find out the composition of liquid mixture if the total vapour pressure of mixture is 600 mmHg.

OR

- (b) (i) What type of deviation from Raoult's law is expected when phenol and aniline are mixed with each other? What change in the net volume of the mixture and enthalpy is expected?
 - (ii) Boiling point of water at 750 mmHg is 99.48° C. How much sucrose (M = 342 g mol^{-1}) is to be added to 500 g of water such that it boils at 100° C? [K_b for water = $0.52 \text{ K kg mol}^{-1}$] 2+3
- 33. (a) (i) An organic compound 'P' $(C_8H_{10}O)$ on oxidation gave compound 'Q'. The compound 'Q' can also be obtained from a reaction of benzene with acetyl chloride in the presence of anhydrous $AlCl_3$. 'Q' on treatment with I_2 in aq. NaOH gave 'R' and a yellow compound 'S'. Identify 'P', 'Q', 'R' and 'S'.
 - (ii) Give the structure(s) of the product(s) when benzaldehyde is heated in the presence of conc. KOH.

 4+1

OR

- (ख) (i) निम्नलिखित रूपान्तरण संपन्न कीजिए :
 - (I) प्रोपेनोन से प्रोपेन
 - (II) ऐसीटोफ़ीनोन से बेन्ज़ोइक अम्ल
 - (III) बेन्ज़िल क्लोराइड से फेनिलएथेनोइक अम्ल
 - (ii) निम्नलिखित यौगिक युगलों में विभेद करने के लिए सरल रासायनिक परीक्षण दीजिए:
 - (I) बेन्ज़ैल्डिहाइड और फ़ीनॉल
 - (II) ब्यूटेनैल और ब्यूटेन-2-ओन

- (b) (i) Carry out the following conversions:
 - (I) Propanone to Propane
 - (II) Acetophenone to Benzoic acid
 - (III) Benzyl chloride to Phenylethanoic acid
 - (ii) Give a simple chemical test to distinguish between the following pairs of compounds:
 - (I) Benzaldehyde and Phenol
 - (II) Butanal and Butan-2-one

Marking Scheme **Strictly Confidential**

(For Internal and Restricted use only)
Senior Secondary School Supplementary Examination, July-2025

SUBJECT NAME: CHEMISTRY SUBJECT CODE:043 PAPER CODE: 56/S/1

General	Instruc	ctions: -
---------	---------	-----------

You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. 'Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to
which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. 'Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to
avoid mistakes, it is requested that before starting evaluation, you must read and understand he spot evaluation guidelines carefully. 'Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to
he spot evaluation guidelines carefully. 'Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to
Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to
examinations conducted, Evaluation done and several other aspects. Its' leakage to
public in any manner could lead to derailment of the examination system and affect the
ife and future of millions of candidates. Sharing this policy/document to anyone,
oublishing in any magazine and printing in News Paper/Website etc may invite action
under various rules of the Board and IPC."
Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be
done according to one's own interpretation or any other consideration. Marking Scheme
should be strictly adhered to and religiously followed. However, while evaluating, answers
which are based on latest information or knowledge and/or are innovative, they may be
assessed for their correctness otherwise and due marks be awarded to them. In class-
(II, while evaluating two competency-based questions, please try to understand given
answer and even if reply is not from marking scheme but correct competency is
enumerated by the candidate, due marks should be awarded.
The Marking scheme carries only suggested value points for the answers. These are in the nature of Guidelines only and do not constitute the complete answer. The students can have
their own expression and if the expression is correct, the due marks should be awarded
accordingly.
The Head-Examiner must go through the first five answer books evaluated by each evaluator
on the first day, to ensure that evaluation has been carried out as per the instructions given in
he Marking Scheme. If there is any variation, the same should be zero after deliberation and
discussion. The remaining answer books meant for evaluation shall be given only after
ensuring that there is no significant variation in the marking of individual evaluators.
Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer CROSS 'X" be
marked. Evaluators will not put right (✔) while evaluating which gives an impression that
answer is correct and no marks are awarded. This is most common mistake which
evaluators are committing.
f a question has parts, please award marks on the right-hand side for each part. Marks
awarded for different parts of the question should then be totalled up and written in the left-
nand margin and encircled. This may be followed strictly.
f a question does not have any parts, marks must be awarded in the left-hand margin and
encircled. This may also be followed strictly.
f a student has attempted an extra question, answer of the question deserving more marks
should be retained and the other answer scored out with a note "Extra Question".
No marks to be deducted for the cumulative effect of an error. It should be penalized only
once.
A full scale of marks 70 has to be used. Please do not hesitate to award full marks if the

	answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours
	every day and evaluate 20 answer books per day in main subjects and 25 answer books per
	day in other subjects (Details are given in Spot Guidelines).
13	Ensure that you do not make the following common types of errors committed by the
	Examiner in the past: - Giving more marks for an answer than assigned to it.
	Wrong totalling of marks awarded on an answer.
	 Wrong transfer of marks from the inside pages of the answer book to the title page.
	Wrong question wise totalling on the title page.
	 Leaving answer or part thereof unassessed in an answer book.
	Wrong totalling of marks of the two columns on the title page.
	Wrong grand total.
	Marks in words and figures not tallying/not same.
	Wrong transfer of marks from the answer book to online award list.
	Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is
	correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect
	answer.)
14	Half or a part of answer marked correct and the rest as wrong, but no marks awarded. While avaluating the answer healts if the answer is found to be totally incorrect, it about the
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be
15	marked as cross (X) and awarded zero (0) Marks. Any un assessed portion, non-carrying over of marks to the title page, or totalling error
15	detected by the candidate shall damage the prestige of all the personnel engaged in the
	evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned,
	it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for
10	spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to
	the title page, correctly totalled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment
	of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners
	are once again reminded that they must ensure that evaluation is carried out strictly as per
	value points for each answer as given in the Marking Scheme.

MARKING SCHEME 2025

CHEMISTRY (Theory)- 043 QP CODE 56/S/1

Q. No.	Value points	Mark
	SECTION A	
1.	(C)	1
2.	(C)	1
3.	(D)	1
4.	(A)	1
5.	(B)	1
6.	(C)	1
7.	(A)	1
8.	(D)	1
9.	(C)	1
10.	(D)	1
11.	(D)	1
12.	(D)	1
13.	(B)	1
14.	(A)	1
15.	(A)	1
16.	(D)	1
	SECTION B	
17.	(a) Starch is made up of α -D glucose units while cellulose is made up of β -D glucose units.	1
	(b) Amino acids linked with each other in a specific sequence is a primary structure while	
	secondary structure refers to the shape in which a long polypeptide chain can exist.	1
	(Or any other one suitable difference).	1
18.	• 'B'	1/2
	On dilution, there is a slight increase in the number of ions of strong electrolytes	
	whereas in weak electrolytes, the number of ions increases to a greater extent.	1/2
	↑ 	
	, B.	
	'A'	1
	$\sqrt{c} \xrightarrow{A}$	
19.	(a) A Galvanic cell which converts the energy of combustion of fuel directly into electrical	1
17.	energy.	1
	High efficiency, pollution free.	1/2, 1/2
	OR	/2, /2
	(b) (i) H ₂ at cathode, O ₂ at anode	1/2, 1/2
	(ii) Cu at cathode, Cl_2 at anode.	1/2, 1/2
20.	(a) Carbylamine reaction	1
40.	(a) Carbylannine reaction (b) $C - Cl$ bond is not cleaved easily by NH_3 due to partial double bond character of $C - Cl$	1
	Figure $x=x_A$ from the figure of cashes by the studie to Dathai double bond character of $X=X_A$	1

21.	(a)	
21.	Rate of reaction decreases on decreasing temperature.	1/2
	Effective collisions decrease / Decrease in fraction of molecules having energy	1/2
	equal to or greater than E_a .	
	(b)Rate of reaction increases on adding a catalyst.	1/2
	 Due to lowering of activation energy. 	1/2
	SECTION C	
22.	(a) pentaamminenitrito-O-cobalt(III) ion	1
	(b) dsp ² , diamagnetic	1/2, 1/2
	(c) Coordination isomerism	1
23.	(a) Beside being a nucleophile, methoxide acts as a strong base. Thus, elimination reaction	
	predominates over substitution to give alkene as the main product and not ether.	1
	(b) Due to intramolecular H-bonding in o-nitrophenol, whereas intermolecular H-bonding in p-nitrophenol.	1
	(c) Alkoxide ion is less stable than the phenoxide ion, which is resonance stabilised.	1
	(Or any other suitable reason).	
24.	$E_{cell} = E^{0}_{cell} - \frac{0.059}{2} \log \frac{[Mg^{2+}]}{[Cu^{2+}]}$	1
	$E_{cell} = 2.71 - \frac{0.059}{2} \log \frac{[0.001]}{[0.0001]}$	1
	$E_{cell} = 2.71 - \frac{0.059}{2} \log 10$	
	_	
	$E_{cell} = 2.71 - 0.0295$	
	E _{cell =} 2.68 V (Deduct ½ mark for no or incorrect unit)	1
25.	(a)	
	$A = CH_3 - CH - CH_2MgBr$ $B = CH_3 - CH - CH_3$ CH_3 CH_3	
	CH ₃ CH ₃	
		½ x 6
	$C = CH_3 - CH - CH_2 - OC_2H_5 \qquad D = CH_3 - C = CH_2$,
	CH ₃	
	_	
	Br $\operatorname{CH}_3\operatorname{CH}_3$	
	$E = CH_3 - C - CH_3 \qquad F = CH_2 - C - C - CH_2$	
	$\mathbf{E} = \mathbf{CH_3} - \mathbf{C} - \mathbf{CH_3}$ $\mathbf{CH_3}$ $\mathbf{F} = \mathbf{CH_3} - \mathbf{C} - \mathbf{C} - \mathbf{CH_3}$ $\mathbf{CH_3}$ $\mathbf{CH_3}$	
	$\mathbf{E} = \mathbf{CH}_{3} - \mathbf{C}_{3} - \mathbf{CH}_{3} \\ \mathbf{CH}_{3} \\ \mathbf{CH}_{3} \\ \mathbf{F} = \mathbf{CH}_{3} - \mathbf{C}_{3} - \mathbf{C}_{3} \\ \mathbf{CH}_{3} \\ \mathbf{CH}$	
	OR	
	(b) (i) CH ₃ CN / Methyl cyanide / Ethanenitrile is formed.	1
	 (ii) CH₃I / Iodomethane / Methyl iodide is formed. (c) CH₃F / Fluoromethane / Methyl fluoride is formed. 	1 1
	(c) CITY / I INCIDENTATION / INCIDENT HUCHING IS TOTHICU.	1
26.		
26.	$X = \bigcirc$ CONHC ₂ H ₅	1

	Name: N-Ethylbenzamide.	1
	No, 'X' will not undergo the Hoffmann bromamide degradation reaction.	1/2
	As it is a N-substituted amide.	1/2
27.	Let the order w.r.t to A be x and y w.r.t to B	
	$Rate = k [A]^{x} [B]^{y}$	
	$3 \times 10^{-4} = k [0.10]^{x} [0.10]^{y}$ (1)	
	$9 \times 10^{-4} = k [0.30]^{x} [0.30]^{y}$ (2)	
	$3 \times 10^{-4} = k [0.10]^{x} [0.30]^{y}$ (3)	
	$6 \times 10^{-4} = k [0.20]^{x} [0.40]^{y}(4)$	
	Dividing Exp. (1) by (3)	1
	y = 0, the order w.r.t B is 0.	1
	Dividing Exp. (2) by (3)	
	$3 = 3^{x}$	
	i.e., $x = 1$, order w.r.t A is 1.	1
	Overall order of the reaction = 1	1 1/2
	$Rate = k [A]^{1} [B]^{0} / Rate = k [A]$	1/2
28.	(a) Because aldehydes form water soluble hydrogensulphite addition compounds which	1
	can be converted back to the aldehydes on treating it with dilute mineral acid or alkali.	
	(b) Due to steric hindrance created by three methyl groups / Due to steric hindrance.	1
	(c) The other -NH ₂ group is in resonance with the carbonyl group.	1
	SECTION D	
29.	(a) Spectrochemical series: Arrangement of ligands in the increasing order of their field	1
	strength.	
	$\Delta_{\rm t} = (4/9) \Delta_{\rm o}$	1
	(b) (i) $[\text{Co(CN)}_6]^{3-} < [\text{Co(NH}_3)_6]^{3+} < [\text{Cu(H}_2\text{O})_4]^{2+}$	1
	OR	
	(b) (ii) $t_{2g}^3 e_g^2$	1
	(c) The energy required to separate the degenerate d-orbitals into t_{2g} and e_g sets, when	1
30.	ligands approach the central metal atom/ion. (a) Biofuel, provide energy, an instant source of energy, energy storage, cell wall formation	1+1
50.	(any two)	171
	(or any other two suitable functions)	
	(b) A carbohydrate that cannot be hydrolysed further to give a simpler unit of polyhydroxy	1
	aldehyde or ketone.	
	(c) (i) Rickets (in children) / Osteomalacia (in adults).	1
	OR	1
	(c) (ii) Insulin. SECTION E	1
31.	2MnO + 4KOH + O × 2K MnO + 2H O	1
31.	(a) (i) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$	1
	$3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$	1
	(ii) (I) Due to the absence of unpaired electrons in d-orbitals. / no d-d transition.	1
	(II) Due to the low $^{\Delta_{hyd}H^{\circ}}$ and high $^{\Delta_{a}H^{\circ}}$ of Cu^{2+} , whereas Mn^{2+} has lower $^{\Delta_{a}H^{\circ}}$	1
	as well as lower $^{\Delta_{\text{hyd}}\text{H}^{\circ}}$ / Due to the low $^{\Delta_{\text{hyd}}\text{H}^{\circ}}$ and high $^{\Delta_{\mathbf{a}}\text{H}^{\circ}}$ of Cu^{2+} , whereas Mn^{2+}	1
	is highly stable due to its 3d ⁵ configuration.	

	(III) Due to the presence of a greater number of unpaired electrons, resulting in strong interatomic interactions / metallic bonding.	1
	OR	
	(b) (i)	
	(I) $Cr_2O_7^{2-} + 8H^+ + 3H_2S \rightarrow 2Cr^{3+} + 7H_2O + 3S$	1
	(II) $2Cu^{2+} + 4I^{-} \rightarrow Cu_{2}I_{2(s)} + I_{2}$ (ii)	1
	(I) Due to lanthanoid contraction. (II) Due to more number of unpaired electrons from ns and (n-1)d in chromium as	1
	compared to manganese.	1
	(III) Due to the higher value of the third ionisation enthalpy of zinc.	1
32.	(a) (i) The extra pressure applied on the solution side, which just stops the flow of solvent across the semipermeable membrane.	1
	$\pi \propto c$ / because it depends on concentration or the number of moles of solute particles. (ii)	1
	$P_{t} = P_{A}^{\circ} x_{A} + P_{B}^{\circ} x_{B}$ $P_{t} = P_{A}^{\circ} (1 - x_{B}) + P_{B}^{\circ} x_{B}$	1
	$600 = 450 (1 - x_{\rm B}) + 700 x_{\rm B}$	1
	$x_{\rm R} = 0.6$	1/2
	$x_{A} = 1 - x_{B}$	
	$x_{\rm A} = 0.4$	1/2
	OR	
	(b) (i) Negative deviation	1
	Volume of the mixture decreases	1/2 1/2
	$\Delta \mathbf{H} = -\mathbf{ve.}$	1/2
	(ii) $\Delta T_{\rm h} = 100 - 99.48 = 0.52$	
	$\Delta T_b = K_b \cdot m$	1
	$0.52 = 0.52 X \frac{W_B}{M_B} \times \frac{1000}{W_A}$	1
	$W_{B} = \frac{342}{1000} \times \frac{500}{1}$ $= 171 \text{ g.}$ (Deduct ½ mark for no or incorrect unit)	1

33.	(a) OH $CH - CH_3$ $R = \bigcirc COO^-Na^+$	1 x 4
	$Q = \bigcirc COCH_3$ $S = CHI_3$ (ii) $\bigcirc COO^-K^+ + \bigcirc CH_2OH$	1
	OR	
	(b) (i)	
	(I)	
	(1)	
	$CH_3COCH_3 \xrightarrow{Zn-Hg} CH_3CH_2CH_3$	
	$CH_3COCH_3 \xrightarrow{ZH-Hg} CH_3CH_2CH_3$	1
	Conc. HCl	
	(II)	
	$\begin{array}{c cccc} & & & & & & & & & & & & & & & & & $	1
	(III)	
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{CH}_2\text{Cl} \\ \text{NaCN} \end{array} \end{array} \begin{array}{c} \text{CH}_2\text{CN} \\ \end{array} \begin{array}{c} \text{H+,} \\ \text{H}_2\text{O} \\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \text{CH}_2\text{COOH} \end{array} $	1
	(ii) (I) Benzaldehyde will form a silver mirror on warming it with Tollens' reagent,	
	whereas Phenol will not.	_
		1
	(II) Butan-2-one on heating with NaOH & I ₂ will give yellow ppt of CHI ₃ , whereas	
	butanal will not. (Or any other suitable chemical test)	1