

Series: WYXZ7

SET ~ 1

प्रश्न-पत्र कोड Q.P. Code 56/7/1

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें। Candidates must write the Q.P. Code

on the title page of the answer-book.

(I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ **23** हैं।

Please check that this question paper contains 23 printed pages.

(II) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।

Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

(III) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 33 प्रश्न हैं। Please check that this question paper contains 33 questions.

(IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथा स्थान पर प्रश्न का क्रमांक अवश्य लिखें।

Please write down the Serial Number of the question in the answer-book at the given place before attempting it.

(V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।

15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे

Time allowed: 3 hours

अधिकतम अंक : 70

Maximum Marks: 70

सामान्य निर्देश :

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में 33 प्रश्न हैं। सभी प्रश्न अनिवार्य हैं।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **खण्ड क, ख, ग, घ,** एवं **ङ**।
- (iii) खण्ड क प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) खण्ड ख प्रश्न संख्या 17 से 21 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 2 अंकों का है।
- (v) खण्ड ग प्रश्न संख्या 22 से 28 तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 3 अंकों का है।
- (vi) खण्ड घ प्रश्न संख्या 29 तथा 30 केस-आधारित प्रश्न हैं। प्रत्येक प्रश्न 4 अंकों का है।
- (vii) खण्ड ङ प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड क के अतिरिक्त अन्य सभी खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग **वर्जित** है।

खण्ड क

प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के 1 अंक के प्रश्न हैं।

 $16 \times 1 = 16$

- 1. निम्नलिखित में से कौन-सा संक्रमण धातु आयन रंगीन **नहीं** है ?
 - (A) Cu⁺
 - (B) Ni^{2+}
 - (C) Co^{2+}
 - (D) V³⁺
- 2. निम्नलिखित में से किस विलयन का जल में क्वथनांक उच्चतम होगा ?
 - (A) 1% KCl
 - (B) 1% ग्लूकोस
 - (C) 1% यूरिया
 - (D) 1% CaCl₂

General Instructions:

 $\it Read\ the\ following\ instructions\ carefully\ and\ follow\ them:$

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into **five** sections **Section A**, **B**, **C**, **D** and **E**.
- (iii) **Section A** questions number **1** to **16** are multiple choice type questions. Each question carries **1** mark.
- (iv) **Section B** questions number **17** to **21** are very short answer type questions. Each question carries **2** marks.
- (v) **Section C** questions number **22** to **28** are short answer type questions. Each question carries **3** marks.
- (vi) **Section D** questions number **29** and **30** are case-based questions. Each question carries **4** marks.
- (vii) **Section E** questions number **31** to **33** are long answer type questions. Each question carries **5** marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the sections except Section A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculator is **not** allowed.

SECTION A

Questions no. 1 to 16 are Multiple Choice type Questions, carrying 1 mark each. $16 \times 1 = 16$

- **1.** Which of the following transition metal ion is *not* coloured?
 - (A) Cu⁺
 - (B) Ni^{2+}
 - (C) Co^{2+}
 - (D) V^{3+}
- 2. Which of the following solutions will have the highest boiling point in water?
 - (A) 1% KCl
 - (B) 1% glucose
 - (C) 1% urea
 - (D) 1% CaCl₂

 ${f 3.}$ प्लैटिनम इलेक्ट्रोडों का प्रयोग करते हुए तनु ${f H}_2{f SO}_4$ के विद्युत-अपघटन के दौरान ऐनोड पर उत्सर्जित गैस है :

- (A) H_2 गैस
- (B) O_2 गैस
- (C) SO_2 गैस
- (D) SO_3 गैस

4. निम्नलिखित आलेखों में से किसके ढाल के द्वारा किसी अभिक्रिया की सिक्रयण ऊर्जा (E_a) ज्ञात की जा सकती है ?

- (A) *ln* k और T के मध्य
- (B) $\frac{\ln k}{T}$ और T के मध्य
- (C) ln k और $\frac{1}{T}$ के मध्य

5. निम्नलिखित में से कौन-सा \mathbf{E}_a के बराबर अथवा इससे अधिक ऊर्जा वाले अणुओं के अंश को निरूपित करता है ?

- $(A) \qquad \frac{-E_a}{RT}$
- (B) $e^{-E_a/RT}$
- (C) $e^{+E_a/RT}$
- (D) $+\frac{E_a}{RT}$

- 3. During electrolysis of dilute ${\rm H_2SO_4}$, using platinum electrodes, the gas evolved at the anode is :
 - (A) H_2 gas
 - (B) O_2 gas
 - (C) SO_2 gas
 - (D) SO_3 gas
- 4. The activation energy (E_a) of a reaction can be determined from the slope of which of the following plots ?
 - (A) ln k vs. T
 - (B) $\frac{\ln k}{T}$ vs. T
 - (C) $ln k vs. \frac{1}{T}$
 - (D) $\frac{T}{\ln k}$ vs. $\frac{1}{T}$
- 5. Which of the following represents the fraction of molecules with energies equal to or greater than E_a ?
 - (A) $-\frac{E_a}{RT}$
 - (B) $e^{-E_a/RT}$
 - $(C) \qquad e^{+\,E_{a}/RT}$
 - (D) $+\frac{E_a}{RT}$

- **6.** जब एक मोल $[Co(NH_3)_3Cl_3]$ के साथ $AgNO_3$ विलयन को आधिक्य में मिश्रित किया जाता है, तब अवक्षेपित AgCl के मोलों की संख्या है :
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 3
- 7. निम्नलिखित हैलोऐल्केनों में से कौन-सा जलीय KOH के साथ ${
 m S}_{
 m N}1$ अभिक्रिया सर्वाधिक तीव्रता से देता है ?
 - (A) 2-क्लोरोब्यूटेन
 - (B) 1-ब्रोमोब्यूटेन
 - (C) 2-ब्रोमो-2-मेथिलप्रोपेन
 - (D) 2,2-डाइमेथिल-1-क्लोरोप्रोपेन
- 8. अभिक्रिया

$$R - OH + Na \longrightarrow RO^{-}Na^{+} + \frac{1}{2}H_{2}\left(g\right)$$

सुझाती है कि ऐल्कोहॉल होते हैं:

- (A) अम्लीय
- (B) क्षारकीय
- (C) उदासीन
- (D) उभयधर्मी
- **9.** निम्न ताप पर, फ़ीनॉल, CS_2 में Br_2 के साथ अभिक्रिया करके बनाता है :
 - (A) 2,4,6-ट्राइब्रोमोफ़ीनॉल
 - (B) *p*-ब्रोमोफ़ीनॉल
 - (C) o- और p-ब्रोमोफ़ीनॉल
 - (D) 2,4-डाइब्रोमोफ़ीनॉल

- **6.** The number of moles of AgCl precipitated when excess AgNO₃ solution is mixed with one mole of [Co(NH₃)₃Cl₃] is :
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 3
- 7. Which of the following haloalkanes react with aqueous KOH most rapidly by S_N1 reaction?
 - (A) 2-Chlorobutane
 - (B) 1-Bromobutane
 - (C) 2-Bromo-2-Methylpropane
 - (D) 2,2-Dimethyl-1-Chloropropane
- **8.** The reaction

$$R - OH + Na \longrightarrow RO^{-}Na^{+} + \frac{1}{2}H_{2}(g)$$

suggests that alcohols are:

- (A) Acidic
- (B) Basic
- (C) Neutral
- (D) Amphoteric
- **9.** At low temperature, phenol reacts with Br_2 in CS_2 to form :
 - (A) 2,4,6-tribromophenol
 - (B) p-bromophenol
 - (C) o-and p-bromophenol
 - (D) 2,4-dibromophenol

- 10. जब ऐिल्कल आयोडाइड को अमोिनया के अत्यधिक आधिक्य के साथ अभिक्रियित किया जाता है, तब प्राप्त मुख्य उत्पाद है:
 - (A) तृतीयक ऐमीन
 - (B) चतुष्क अमोनियम लवण
 - (C) द्वितीयक ऐमीन
 - (D) प्राथमिक ऐमीन
- 11. कोई ऐमीन 'X' हिन्सबर्ग अभिकर्मक के साथ अभिक्रिया करता है तथा प्राप्त उत्पाद क्षार में विलेय है। ऐमीन 'X' है:
 - (A) $CH_3 NH_2$
 - (B) $(CH_3)_2NH$
 - (C) $(CH_3)_3N$
 - (D) \sim NH CH₃
- 12. α -हेलिक्स संरचना संकेत करती है :
 - (A) प्रोटीन की प्राथमिक संरचना
 - (B) प्रोटीन की द्वितीयक संरचना
 - (C) प्रोटीन की तृतीयक संरचना
 - (D) प्रोटीन की चतुष्क संरचना

- **10.** When alkyl iodide is treated with large excess of ammonia, the major product obtained is:
 - (A) Tertiary amine
 - (B) Quaternary ammonium salt
 - (C) Secondary amine
 - (D) Primary amine
- 11. An amine 'X' reacts with Hinsberg reagent and the product obtained is soluble in alkali. The amine 'X' is:
 - (A) $CH_3 NH_2$
 - (B) $(CH_3)_2NH$
 - (C) $(CH_3)_3N$
 - $(D) \qquad \boxed{ \qquad } NH-CH_3$
- **12.** α -helix structure refers to :
 - (A) primary structure of protein
 - (B) secondary structure of protein
 - (C) tertiary structure of protein
 - (D) quaternary structure of protein

प्रश्न संख्या 13 से 16 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए।

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या **नहीं** करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (D) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।
- **13.** अभिकथन (A) : o-नाइट्रोफ़ीनॉल और p-नाइट्रोफ़ीनॉल के मिश्रण को वाष्पीय आसवन द्वारा पृथक किया जा सकता है।
 - कारण (R): अंतराआण्विक हाइड्रोजन आबंधन के कारण o-नाइट्रोफ़ीनॉल भाप द्वारा वाष्पित होती है।
- 14. अभिकथन (A) : प्रेशर कुकर में खाना पकने का समय कम हो जाता है ।
 कारण (R) : प्रेशर कुकर में जल के क्वथनांक में उन्नयन हो जाता है ।
- **15.** अभिकथन (A) : ऐक्टिनॉयड अपने इलेक्ट्रॉनिक विन्यासों में अनियमितताएँ दर्शाते हैं। कारण (R) : ऐक्टिनॉयडों की प्रकृति रेडियोसक्रिय होती है।
- **16.** अभिकथन (A): विटामिन K हमारे शरीर में संग्रहित किया जा सकता है। ant (R): विटामिन K जल विलेय विटामिन है।

खण्ड ख

- 17. राउल्ट नियम से धनात्मक विचलन से क्या अभिप्राय है ? एक उदाहरण दीजिए। धनात्मक विचलन से किस प्रकार का स्थिरक्वाथी बनता है ?
- 18. वह शर्त बताइए जिसमें कोई द्वि-अणुक अभिक्रिया प्रथम कोटि बलगतिकी अभिक्रिया का अनुसरण करती है। एक उदाहरण दीजिए। किस प्रकार की अभिक्रियाओं में कोटि और आण्विकता के मान समान होते हैं?

2

For Questions number 13 to 16, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- **13.** *Assertion* (*A*): A mixture of *o*-nitrophenol and *p*-nitrophenol can be separated by steam distillation.
 - Reason(R): o-nitrophenol is steam volatile due to intermolecular hydrogen bonding.
- **14.** *Assertion (A)* : Cooking time is reduced in pressure cooker.
 - Reason (R): Boiling point of water inside the pressure cooker is elevated.
- **15.** Assertion (A): Actinoids show irregularities in their electronic configurations.
 - *Reason (R)*: Actinoids are radioactive in nature.
- **16.** Assertion (A): Vitamin K can be stored in our body.
 - *Reason* (*R*): Vitamin K is a water soluble vitamin.

SECTION B

- 17. What is meant by positive deviation from Raoult's law? Give an example. What type of azeotrope is formed by positive deviation?
- **18.** State a condition under which a bimolecular reaction is kinetically first order reaction. Give an example. For which type of reactions, do order and molecularity have the same value?

2

19. (क) संकुल $[\mathrm{Pt(en)}_2\mathrm{Cl}_2]^{2+}$ का IUPAC नाम लिखिए । इस संकुल के उस ज्यामितीय समावयव की संरचना बनाइए जो ध्रुवण अधूर्णक है ।

अथवा

- (ख) (i) निम्नलिखित उपसहसंयोजन यौगिक का सूत्र लिखिए : पेन्टाऐम्मीनकार्बोनेटोकोबाल्ट(III)क्लोराइड
 - (ii) संकुल $[\mathrm{Co(NH_3)_5(NO_2)}]\mathrm{Cl_2}$ के बन्धनी समावयव का IUPAC नाम लिखिए। 1+1=2

2

2

2

3

3

3

- **20.** हैलोऐरीन्स नाभिकरागी प्रतिस्थापन अभिक्रिया के प्रति कम अभिक्रियाशील क्यों होते हैं ? हैलोऐरीनों में ऑर्थो- तथा पैरा-स्थितियों पर नाइट्रो ($-NO_2$) समूह की उपस्थिति उनकी नाभिकरागी प्रतिस्थापन अभिक्रियाओं के प्रति अभिक्रियाशीलता को क्यों बढा देती है ?
- 21. DNA के दो रज्जुक समान नहीं होते, अपितु एक दूसरे के पूरक होते हैं। समझाइए। DNA के जल-अपघटित होने पर क्या उत्पाद बनेंगे?

खण्ड ग

22. 0.3 g ऐसीटिक अम्ल (मोलर द्रव्यमान = 60 g mol^{-1}) 30 g बेन्ज़ीन में घोलने पर हिमांक में $0.45^{\circ}\mathrm{C}$ का अवनमन होता है। यदि यह विलयन में द्वितय बनाता है, तो अम्ल का प्रतिशत संगुणन परिकलित कीजिए।

(दिया गया है : बेन्ज़ीन के लिए $K_f = 5.12 \text{ K kg mol}^{-1}$)

23. (क) सामान्यत: इन्वर्टरों में प्रयुक्त सेल का नाम लिखिए। इस सेल के ऐनोड और कैथोड पर होने वाली अभिक्रियाएँ लिखिए जब यह उपयोग में होता है।

अथवा

(ख) व्याख्या कीजिए कि NaCl के जलीय विलयन के विद्युत-अपघटन से कैथोड पर H_2 गैस और ऐनोड पर Cl_2 गैस उत्सर्जित क्यों होती है। समग्र अभिक्रिया लिखिए।

(दिया गया है :
$$E_{Na^+/Na}^{\circ} = -2.71 \text{ V}, \quad E_{H_2O/H_2}^{\circ} = -0.83 \text{ V},$$

$$E_{\text{Cl}_2/2\text{Cl}^-}^{\circ} = + \ 1.36 \ \text{V}, \ \ E_{\text{H}^+/\text{O}_2/\text{H}_2\text{O}}^{\circ} = + \ 1.23 \ \text{V})$$

19. (a) Write the IUPAC name of the complex $[Pt(en)_2Cl_2]^{2+}$. Draw the structure of geometrical isomer of this complex which is optically inactive.

2

2

3

3

3

OR

- $\begin{tabular}{ll} \begin{tabular}{ll} Write the formula of the following coordination compound: \\ Pentaammine carbon atocobalt (III) chloride \\ \end{tabular}$
 - (ii) Write the IUPAC name of the linkage isomer of the complex $[\text{Co(NH}_3)_5(\text{NO}_2)]\text{Cl}_2. \\ 1+1=2$
- **20.** Why are haloarenes less reactive towards nucleophilic substitution reaction? How does the presence of nitro (-NO₂) group at ortho- and para-positions in haloarenes increase the reactivity towards nucleophilic substitution reaction?

The two strands in DNA are not identical but complementary. Explain.

What products would be formed when DNA is hydrolysed?

SECTION C

- 22. 0.3 g of acetic acid (Molar mass = 60 g mol⁻¹) dissolved in 30 g of benzene shows a depression in freezing point equal to 0.45°C. Calculate the percentage association of acid if it forms a dimer in the solution. (Given: K_f for benzene = 5.12 K kg mol⁻¹)
- **23.** (a) Write the name of the cell which is generally used in inverters. Write the reactions taking place at anode and cathode of this cell, when it is in use.

OR

 $\begin{array}{ll} \text{(b)} & \text{Explain why electrolysis of an aqueous solution of NaCl gives H_2} \\ & \text{gas at cathode and Cl_2 gas at anode ? Write overall reaction.} \\ & \text{(Given: $E^{\circ}_{Na^+/Na} = -2.71$ V, $E^{\circ}_{H_2O/H_2} = -0.83$ V,} \end{array}$

$$\rm E^{\circ}_{\rm Cl_2/2Cl^-} = +~1.36~V,~~E^{\circ}_{\rm H^+/O_2/H_2O} = +~1.23~V)$$

21.

24. स्थिर आयतन पर, $N_2O_5\left(g\right)$ के प्रथम कोटि के तापीय वियोजन (अपघटन) पर निम्नलिखित आँकड़े प्राप्त हुए :

 $2\mathrm{N}_2\mathrm{O}_5\left(\mathrm{g}\right) \; \longrightarrow \; 2\mathrm{N}_2\mathrm{O}_4\left(\mathrm{g}\right) + \mathrm{O}_2\left(\mathrm{g}\right)$

क्र.सं.	समय/ s	कुल दाब/atm
1	0	0.5
2	100	0.625

वेग स्थिरांक परिकलित कीजिए।

[दिया गया है : $\log 2 = 0.3010$, $\log 10 = 1$]

- 25. आण्विक सूत्र C_4H_9I का कोई यौगिक (A), जो एक प्राथिमक ऐल्किल हैलाइड है, ऐल्कोहॉली KOH के साथ अभिक्रिया करके यौगिक (B) देता है। यौगिक (B), HI के साथ अभिक्रिया करके यौगिक (C) देता है जो (A) का समावयव है। जब (A), शुष्क ईथर की उपस्थित में Na धातु से अभिक्रिया करता है, तब यह यौगिक (D), C_8H_{18} देता है, जो उस यौगिक से भिन्न है जो n-ब्यूटिल आयोडाइड की सोडियम के साथ अभिक्रिया से बनता है। (A), (B), (C) और (D) की संरचनाएँ लिखिए। रासायिनक समीकरण लिखिए जब यौगिक (A), ऐल्कोहॉली KOH के साथ अभिक्रिया करता है।
- 26. निम्नलिखित अभिक्रियाओं के उत्पादों की संरचनाएँ लिखिए :

 $3 \times 1 = 3$

3

(ख)
$$+$$
 सांद्र $\mathrm{HNO}_3 \longrightarrow$

$$(\eta) \qquad \begin{array}{c} \text{MgBr} \\ \text{+ HCHO} & \xrightarrow{\text{H}^+/\text{H}_2\text{O}} \end{array}$$

24. The following data were obtained during the first order thermal decomposition of $N_2O_5(g)$ at constant volume :

3

$$2\mathrm{N}_2\mathrm{O}_5\left(\mathrm{g}\right) \; \longrightarrow \; 2\mathrm{N}_2\mathrm{O}_4\left(\mathrm{g}\right) + \mathrm{O}_2\left(\mathrm{g}\right)$$

S.No.	Time/s	Total Pressure/atm
1	0	0.5
2	100	0.625

Calculate rate constant.

[Given : $\log 2 = 0.3010$, $\log 10 = 1$]

25. A compound (A) with molecular formula C_4H_9I which is a primary alkyl halide, reacts with alcoholic KOH to give compound (B). Compound (B) reacts with HI to give (C) which is an isomer of (A). When (A) reacts with Na metal in the presence of dry ether, it gives a compound (D), C_8H_{18} , which is different from the compound formed when n-butyl iodide reacts with sodium. Write the structures of (A), (B), (C) and (D). Write the chemical equation when compound (A) is reacted with alcoholic KOH.

3

26. Write structure of the products of the following reactions : $3 \times 1 = 3$

(a)
$$OCH_3 + HI \longrightarrow$$

(b)
$$\begin{array}{c} \text{OH} \\ \\ \text{+} & \text{conc. HNO}_3 \\ \end{array}$$

(c)
$$MgBr$$
 + HCHO H^+/H_2O

27. निम्नलिखित के कारण दीजिए :

 $3 \times 1 = 3$

- (क) बेन्ज़ोइक अम्ल फ्रीडेल-क्राफ्ट्स अभिक्रिया नहीं देता है।
- (ख) HCN के संयोजन के प्रति CH₃CHO की तुलना में HCHO अधिक अभिक्रियाशील होता है।
- (ग) कार्बोक्सिलिक अम्ल से वाइनिल समूह के सीधे संयुक्त होने पर अनुनाद के कारण संगत कार्बोक्सिलिक अम्ल की अम्लता कम हो जानी चाहिए, परन्तु इसके विपरीत यह अम्लता को बढा देता है।

28. D-ग्लूकोस की निम्नलिखित के साथ अभिक्रिया लिखिए:

 $3 \times 1 = 3$

- (ক) HCN
- (ख) Br_2 जल
- (\P) (CH₃CO)₂O

खण्ड घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं। केस को ध्यानपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए।

29. क्रिस्टल क्षेत्र सिद्धांत (CFT) उपसहसंयोजन यौगिकों में विद्यमान केंद्रीय धातु परमाण्/आयन के d-कक्षकों की ऊर्जा की समानता पर विभिन्न क्रिस्टल क्षेत्रों के प्रभाव (लिगन्डों को बिंदु आवेश मानते हुए उनके द्वारा प्रदत्त प्रभाव) पर आधारित है। प्रबल क्रिस्टल क्षेत्र तथा दुर्बल क्रिस्टल क्षेत्र में d-कक्षकों के विपाटन से विभिन्न इलेक्ट्रॉनिक विन्यास प्राप्त होते हैं। चतुष्फलकीय सहसंयोजन सत्ता के विरचन में, d-कक्षकों का विपाटन अष्टफलकीय सत्ता से कम होता है।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

- (ख) (i) क्रिस्टल क्षेत्र विपाटन ऊर्जा क्या है?

अथवा

- (ख) (ii) Δ_0 और P (युग्मन ऊर्जा) के आधार पर, आप प्रबल क्षेत्र लिगन्ड और दुर्बल क्षेत्र लिगन्ड के मध्य कैसे अंतर कर सकते हैं ?
- (ग) निम्न प्रचक्रण चतुष्फलकीय संकुल विरले ही क्यों देखे जाते हैं?

1 1

2

Give reasons for the following: **27**.

- $3 \times 1 = 3$
- Benzoic acid does not undergo Friedel-Crafts reaction. (a)
- (b) HCHO is more reactive than CH₃CHO towards addition of HCN.
- Vinyl group directly attached with carboxylic acid should decrease (c) the acidity of corresponding carboxylic acid due to resonance, but on the contrary it increases the acidity.
- 28. Write the reaction of D-Glucose with the following:

 $3 \times 1 = 3$

- (a) **HCN**
- (b) Br₂ water
- (CH₃CO)₂O(c)

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

29. The Crystal Field Theory (CFT) of coordination compounds is based on the effect of different crystal fields (provided by the ligands taken as point charges) on the degeneracy of d-orbital energies of the central metal atom/ion. The splitting of the d-orbitals provides different electronic arrangements in strong and weak crystal fields. In tetrahedral coordination entity formation, the d-orbital splitting is smaller as compared to the octahedral entity.

Answer the following questions:

On the basis of CFT, explain why [Ti(H₂O)₆]Cl₃ complex is (a) coloured? What happens on heating the complex [Ti(H₂O)₆]Cl₃? Give reason.

2

[Atomic no. : Ti = 22]

(b) What is crystal field splitting energy? (i)

1

OR

On the basis of Δ_0 and P (pairing energy), how can you (b) (ii) differentiate between a strong field ligand and a weak field ligand?

1

(c) Why are low spin tetrahedral complexes rarely observed? 1

56/7/1

30. ऐमीन प्राय: ऐमाइड, इमाइड, हैलाइड, नाइट्रो यौगिकों, आदि से बनती हैं। ये हाइड्रोजन आबंधन प्रदर्शित करती हैं जिससे इनके भौतिक गुण प्रभावित होते हैं। ऐल्किल ऐमीनों में इलेक्ट्रॉन त्यागने, त्रिविम तथा H-आबंधन कारक प्रोटिक ध्रुवीय विलायकों में प्रतिस्थापित अमोनियम धनायन के स्थायित्व अर्थात् क्षारकता को प्रभावित करते हैं। ऐल्किल ऐमीन अमोनिया की तुलना में प्रबल क्षारक होते हैं। ऐमीनें क्षारक प्रकृति के कारण, अम्लों के साथ अभिक्रिया करके लवण बनाती हैं। ऐरिलडाइऐज़ोनियम लवण, डाइएज़ोनियम समूह, विभिन्न प्रकार के नाभिकरागियों द्वारा प्रतिस्थापित किए जाने पर ऐरिल हैलाइड, सायनाइड, फ़ीनॉल और ऐरीन बनाते हैं।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

- (क) आप निम्नलिखित का रूपान्तरण कैसे सम्पन्न करेंगे ?
 - (i) एथेनॉइक अम्ल से मेथैनेमीन
 - (ii) प्रोपेननाइट्राइल से 1-ऐमीनोप्रोपेन
- (ख) मेथिलऐमीन की तुलना में ऐनिलीन का pK_b मान अधिक क्यों है ?
- (ग) (i) निम्नलिखित को जलीय विलयन में उनकी क्षारकीय सामर्थ्य के बढ़ते हुए क्रम में व्यवस्थित कीजिए:

 $CH_3 - NH_2$, $(CH_3)_2NH$, $(CH_3)_3N$

अथवा

(ग) (ii) निम्नलिखित अभिक्रिया में A और B की संरचनाएँ दीजिए :

 $C_6H_5NO_2 \xrightarrow{Fe/HCl} A \xrightarrow{HNO_2} B$

खण्ड ङ

- **31.** (क) (i) निम्नलिखित के कारण दीजिए :
 - (I) मैंगनीज के लिए $E_{Mn^{2+}/Mn}^{\circ}$ मान अत्यधिक ऋणात्मक है, जबिक $E_{Mn^{3+}/Mn^{2+}}^{\circ}$ अत्यधिक धनात्मक है।
 - (II) ऐक्टिनॉयड ऑक्सीकरण अवस्थाओं का वृहद परास दर्शाते हैं।
 - (III) संक्रमण धातुओं के उच्च गलनांक होते हैं।

1

1

1

2

1

1

30. Amines are usually formed from amides, imides, halides, nitro compounds, etc. They exhibit hydrogen bonding which influences their physical properties. In alkyl amines, a combination of electron releasing, steric and H-bonding factors influence the stability of the substituted ammonium cations in protic polar solvents and thus affect the basic nature of amines. Alkyl amines are found to be stronger bases than ammonia. Amines being basic in nature, react with acids to form salts. Aryldiazonium salts, undergo replacement of the diazonium group with a variety of nucleophiles to produce aryl halides, cyanides, phenols and arenes.

Answer the following questions:

- (a) How can you convert the following?
 - (i) Ethanoic acid to methanamine
 - (ii) Propanenitrile to 1-aminopropane
- (b) Why is pK_b value of aniline more than that of methylamine?

2

1

1

1

1

1

(c) (i) Arrange the following in increasing order of their basic strength in aqueous solution:

 $CH_3 - NH_2$, $(CH_3)_2NH$, $(CH_3)_3N$

OR.

(c) (ii) Give the structures of A and B in the following reaction:

 $C_6H_5NO_2 \xrightarrow{Fe/HCl} A \xrightarrow{HNO_2} B$

SECTION E

- **31.** (a) (i) Account for the following:
 - (I) The $E_{Mn^{2+}/Mn}^{\circ}$ value for manganese is highly negative, whereas $E_{Mn^{3+}/Mn^{2+}}^{\circ}$ is highly positive.
 - (II) Actinoids show wide range of oxidation states.
 - (III) Transition metals have high melting points. 1

	$\sim \sim \sim$	\sim	0 %	`	$^{\prime}$
(ii)	निम्नलिखितः	आयानक	समाकरणा	का	पण काजिए •
(11)	11 11(11)	- 11 11 1 11	** ** ** **		Ø

$$(I) \qquad 5SO_3^{2-} + 2MnO_4^{-} + 6H^{+} \longrightarrow$$

1

(II)
$$2MnO_4^- + H_2O + I^- \longrightarrow$$

1

अथवा

(ख) निम्नलिखित प्रश्नों के उत्तर दीजिए:

 $5 \times 1 = 5$

- (i) 3d श्रेणी के दो तत्त्वों के नाम बताइए जिनकी तृतीय आयनन एन्थैल्पी काफी उच्च है।
- (ii) KMnO₄ और K₂MnO₄ में से कौन-सा अनुचुम्बकीय है और क्यों ?
- (iii) लैंथेनॉयड आकुंचन का कोई एक परिणाम लिखिए।
- (iv) पायरोलुसाइट अयस्क से आप पोटैशियम मैंगनेट कैसे बनाएँगे ?
- (v) संक्रमण धातुओं की उच्चतर ऑक्सीकरण अवस्थाओं को स्थायी करने में फ्लुओरीन की अपेक्षा ऑक्सीजन की क्षमता अधिक क्यों होती है ?
- **32.** (क) (i) $C_5H_{10}O$ आण्विक सूत्र का कोई कार्बनिक यौगिक (X) संरचनाओं पर निर्भर करते हुए विभिन्न गुणधर्म दर्शा सकता है। इसकी प्रत्येक संरचना बनाइए यदि यह :
 - (I) कैनिज़ारो अभिक्रिया दर्शाता है।

1

- (II) टॉलेन्स अभिकर्मक को अपचयित करता है और इसमें एक किरेल कार्बन है।
- (III) धनात्मक आयोडोफॉर्म परीक्षण देता है।

1

1

(ii) निम्नलिखित में सिम्मिलित अभिक्रिया लिखिए:

2

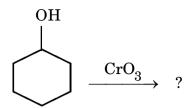
- (I) क्लीमेन्सन अपचयन
- (II) ईटार्ड अभिक्रिया

अथवा

(ख) निम्नलिखित प्रश्नों के उत्तर दीजिए:

 $5 \times 1 = 5$

- (i) मेथेनैल के मेथिल हेमीऐसीटैल की संरचना बनाइए।
- m (ii) सेमीकार्बेज़ाइड में दो $-NH_2$ समूह होते हैं, परंतु केवल एक $-NH_2$ समूह ही सेमीकार्बेज़ोन विरचन में प्रयुक्त होता है। कारण दीजिए।
- (iii) आप एथेनॉल का रूपान्तरण 3-हाइड्रॉक्सीब्यूटेनैल में कैसे सम्पन्न करेंगे ?



		(ii)	Complete the following ionic equations:	
			$(I) \qquad 5SO_3^{2-} + 2MnO_4^{-} + 6H^{+} \longrightarrow$	1
			(II) $2MnO_4^- + H_2O + I^- \longrightarrow$	1
			OR	
	(b)	Ansv	wer the following questions:	5×1=5
		(i)	Name two elements of 3d series for which the thin ionisation enthalpies are quite high.	rd
		(ii)	Out of $KMnO_4$ and K_2MnO_4 , which one is paramagnetic arwhy?	ıd
		(iii)	Write any one consequence of lanthanoid contraction.	
		(iv)	How do you prepare potassium manganate from pyrolusi ore?	te
		(v)	Why is the ability of oxygen more than fluorine to stabilishigher oxidation states of transition metals?	se
32.	(a)	(i)	An organic compound (X) having molecular formula C_5H_{10} can show various properties depending on its structure Draw each of the structures if it:	
			(I) shows Cannizzaro reaction.	1
			(II) reduces Tollens' reagent and has a chiral carbon.	1
			(III) gives positive iodoform test.	1
		(ii)	Write the reaction involved in the following :	2
			(I) Clemmensen reduction	
			(II) Etard reaction	
			OR	
	(b)	Ansv	wer the following questions :	5×1=5
		(<u>*</u>)	D	

- (i) Draw structure of the methyl hemiacetal of methanal.
- (ii) There are two NH $_2$ groups in semicarbazide. However only one is involved in the formation of semicarbazones. Give reason.
- (iii) How will you convert ethanol to 3-hydroxybutanal?

(iv) निम्नलिखित समीकरण को पूर्ण कीजिए :

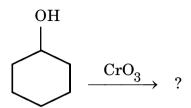
(v) अन्तिम उत्पाद लिखिए जब थैलिक अम्ल को NH_3 के साथ अभिक्रियित करने के पश्चात प्रबल गरम किया जाता है।

3

2

- 33. (क) (i) 25°C पर निम्नलिखित सेल का वि.वा. बल (emf) परिकलित कीजिए : $Zn(s) \, | \, Zn^{2+} \, (0\cdot 1 \, \, \text{M}) \, | \, | \, H^+ \, (0\cdot 01 \, \, \text{M}) \, | \, H_2(g) \, (1 \, \, \text{bar}), \, Pt(s)$ [दिया गया है : $E_{Zn}^{\circ}{}^{2+}/Z_n \, = -0\cdot 76 \, \text{V}, \quad E_{2H}^{\circ}{}^{+}/H_2 \, = 0\cdot 00 \, \text{V}, \, \log 10 = 1]$
 - (ii) फैराडे का विद्युत-अपघटन का द्वितीय नियम बताइए। 1 मोल ${\rm Cr_2O_7}^{2-}$ के ${\rm Cr^{3+}}$ में अपचयन के लिए फैराडे के पदों में विद्युत की कितनी मात्रा आवश्यक है ?

अथवा


- (ख) निम्नलिखित प्रश्नों के उत्तर दीजिए :
 - (i) KCl के 0.20 M विलयन की चालकता 2.48×10^{-2} S cm $^{-1}$ है। इसकी मोलर चालकता एवं वियोजन मात्रा (α) का परिकलन कीजिए। $[दिया \ 172 \] = 73.5 \ S \ cm^2 \ mol^{-1}$ $\lambda_{(Cl^-)}^{\circ} = 76.5 \ S \ cm^2 \ mol^{-1}]$
 - (ii) निम्नलिखित सेल के लिए $\Delta_r G^\circ$ परिकलित कीजिए :

$$Mg(s) + Cu^{2+}(aq) \longrightarrow Mg^{2+}(aq) + Cu(s)$$
 [िदया गया है : $E_{Mg^{2+}/Mg}^{\circ}$ = -2.37 V, $E_{Cu^{2+}/Cu}^{\circ}$ = $+0.34$ V 1 F = 96500 C mol^{-1}]

(iii) मर्करी सेल किस प्रकार का सेल है ? यह शुष्क सेल की अपेक्षा अधिक लाभकारी क्यों है ? 2+2+.

(iv) Complete the following equation:

- (v) Write the final product formed when phthalic acid is treated with NH₃ followed by strong heating.
- 33. (a) (i) Calculate the emf of the following cell at 25°C: $Zn(s) \left| Zn^{2+} (0.1 \text{ M}) \right| \left| H^{+} (0.01 \text{ M}) \right| H_{2}(g) \ (1 \text{ bar}), \ Pt(s)$ [Given : $E_{Zn^{2+}/Zn}^{\circ} = -0.76 \text{ V}, \ E_{2H^{+}/H_{2}}^{\circ} = 0.00 \text{ V}, \ \log 10 = 1$]
 - (ii) State Faraday's second law of electrolysis. How much electricity is required in terms of Faraday for the reduction of 1 mol of $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ to Cr^{3+} ?

2

OR

- (b) Answer the following questions:
 - (i) The conductivity of $0.20\,\mathrm{M}$ solution of KCl is $2.48\times10^{-2}~\mathrm{S~cm}^{-1}$. Calculate its molar conductivity and degree of dissociation (α).

[Given :
$$\lambda_{(K^+)}^{\circ} = 73.5 \text{ S cm}^2 \text{ mol}^{-1}$$

 $\lambda_{(Cl^-)}^{\circ} = 76.5 \text{ S cm}^2 \text{ mol}^{-1}$]

(ii) Calculate $\Delta_r G^{\circ}$ of the following cell :

$$Mg(s) + Cu^{2+}(aq) \longrightarrow Mg^{2+}(aq) + Cu(s)$$

[Given: $E^{\circ}_{Mg^{2+}/Mg} = -2.37 \text{ V}, \quad E^{\circ}_{Cu^{2+}/Cu} = +0.34 \text{ V}$
 $1 \text{ F} = 96500 \text{ C mol}^{-1}$]

(iii) What type of cell is mercury cell? Why is it more advantageous than dry cell? 2+2+1=5

Marking Scheme Strictly Confidential

(For Internal and Restricted use only)
Senior School Certificate Examination, 2024-25
SUBJECT NAME CHEMISTRY (Theory) -043

(Q.P.CODE 56/7/1) MM: 70

General Instructions: -

You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.

"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."

Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.

The Marking scheme carries only suggested value points for the answers

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.

Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. **This is most common mistake which evaluators are committing.**

If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.

If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".

No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

A full scale of marks _____(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.

Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on an answer.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying/not same.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)

Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.

Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.

Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.

The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

CHEMISTRY (Theory)- 043

QP CODE 56/7/1 MM: 70

Q.No	Value points	Mark
	SECTION A	
1	A	1
2	D	1
3	В	1
4	С	1
5	В	1
6	A	1
7	С	1
8	A	1
9	С	1
10	D	1
11	A	1
12	В	1
13	С	1
14	A	1
15	В	1
16	C	1
	SECTION B	
17	When vapour pressure of the solution is higher than expected from the ideal	1
	behaviour.	
	Example: ethanol and acetone/carbon disulphide and acetone (or any other suitable	1/2
	example)	-
	Minimum boiling azeotrope	1/2
18	When one of the reactant is present in excess	1
	Hydrolysis of an ester/ sucrose (or any other suitable example)	1/2
	For elementary reaction, which takes place in a single step.	1/2
19	a) Dichloridobis(ethane-1,2-diamine)platinum(IV) ion	1
	2+	
	CI	
	en Pt en	
		1
	Cl	
	OR	
19	i) [Co(NH₃)₅(CO₃)]Cl	1
	ii) Pentaamminenitrito-O-cobalt(III) chloride	1
20	-Because C—X bond acquires a partial double bond character due to resonance/ sp ²	1
	hybridized carbon of C-X bond leading to shorter bond length (Or any other suitable	
	reason).	
	-Nitro group withdraws the electron density from the benzene ring and thus facilitates	
	the attack of the nucleophile on haloarene / -NO ₂ group being electron withdrawing	1
	stabilises the intermediate carbanion.	
21	Because the hydrogen bonds are formed between specific pairs of bases	1
	2-deoxyribose sugar , base and phosphoric acid	1

	SECTION C	
22	$\Delta T_f = iK_f m$	
	The state of the s	
	$\Delta T_f = \frac{I \times \frac{K_f \times w_2 \times 1000}{M_2 \times w_1}}{M_2 \times w_1}$	1/2
	$0.45 = \frac{i \times 5.12 \times 0.3 \times 1000}{60 \times 30}$	1
	i = 0.527	
	<i>i</i> _1	1/2
	$\alpha = \frac{i-1}{1/n-1}$	1/
	$\alpha = \frac{0.527 - 1}{1/2 - 1} \qquad (n=2)$	1/2
	$\alpha = 0.946$ or 94.6% (Or any other suitable method)	1/
23	(a) Lood storage better:	1/2
	(a) Lead storage battery Anode: Pb(s) + SO ₄ ² (aq) → PbSO ₄ (s) + 2e	1
	Cathode: $PbO_2(s) + SO_4^{2-}(aq) + 4H^{\dagger}(aq) + 2e^- \rightarrow PbSO_4(s) + 2H_2O(l)$	1 1
	OR	
23	(b)Because at cathode the reaction with higher value of E° is preferred and therefore, the	
	reduction of H_2O to H_2 gas is preferred whereas at anode water should get oxidised in preference to Cl^- (aq), however, on account of	1
	overpotential of oxygen, oxidation of Cl ⁻ to Cl ₂ gas is preferred.	1
	$NaCl(aq) + H_2O(l) \rightarrow Na^{+}(aq) + OH^{-}(aq) + \frac{1}{2}H_2(g) + \frac{1}{2}Cl_2(g)$	1
24	$2N_2O_5(g) \rightarrow 2N_2O_4(g) + O_2(g)$ Start $t = 0$ Pi atm 0 atm	
	At time t (Pi – 2x) atm 2x atm x atm	
	$P_t = P_i - 2x + 2x + x = P_i + x$	
	$x = P_{t} - P_{i}$ $p_{A} = P_{i} - 2x$	
	$\begin{vmatrix} p_A - P_i - 2x \\ = P_{i-} 2(P_{t-} P_i) \end{vmatrix}$	
	$= 3P_i - 2P_t$	
	$p_1 = 2.303_{1-1} p_1$	
	$k = \frac{2.303}{t} \log \frac{p_i}{p_A}$	1
	Where pi=0.5 atm,	
	$p_A = 3p_i - 2p_t$ = (3X 0.5)-(2x0.625)	
	=0.25atm	
	$k = \frac{2.303}{100s} log \frac{0.5 atm}{0.25 atm}$	1
	1000 VILY MIN	_
	$=\frac{2.303}{1000} \times 0.3010$	
	1008	1
	$= 6.93 \times 10^{-3} \text{ s}^{-1}$	

25	A=	
	CH ₃ — CH — CH ₂ —	
	CH ₃ — CH — CH ₂ — I	1/2
	ĊH ₃	
	B=	
	$CH_3 - C = CH_2$	
	CH ₃	1/
	C=	1/2
	τ	
	$CH_3 - CH - CH_3$	
	Lay Car Cay	
	CH ₃	1/2
	10,100	/2
	D=	
	CH ₃ CHCH ₂ CHCH ₃	
		1/2
	CH ₃ CH ₃	/2
	CH - CH - CH - I KOH(ale)/A CH - C - CH	
	$CH_3 - CH - CH_2 - 1 \xrightarrow{ROH(a)CJ/2} CH_3 - C = CH_2 + KI + H2O$	
		1
	CH ₃	1
26		
	/ — он	1
	a) CH ₃ I +	_
	b)	
	OH	
	O ₂ N NO ₂	1
	NO	
	c)	
	CH₂OH	
		1
27	a) Because the carboxyl group is deactivating and the catalyst aluminium chloride (Lewis acid)	1
	gets bonded to the carboxyl group.(forms salt)	
	b) Because carbonyl carbon of HCHO is more electrophilic than CH ₃ CHO/ due to +I effect of	1
	methyl group/ steric effect of methyl group, CH₃CHO is less reactive.	
	c) Because of greater electronegativity of sp ² hybridised carbon to which carboxyl carbon is	1
20	attached.	
28	a)	
	CHO CH CHOH), HCN (CHOH),	
		1
	сн,он сн,он	
	b)	
	CHO COOH	
	(Chorn)	
	CH ₂ OH CH ₂ OH	1

	c) CHO O	
	(CHOH), Acetic anhydride, (CH-O-C-CH),	
	l Ö	1
	сн,он	
	SECTION D	
29	a) Due to presence of one unpaired electron in t_{2g} which gets excited to e_g / Due to	1
	excitation energy $t_{2g} \xrightarrow{1} e_g^1$, it gives colour. (d-d transition) When heated, water is lost therefore crystal field splitting does not occur and it becomes colourless.	1
	b) The energy required to split the degenerate d-orbitals into two sets of orbitals (t_2g and e_g). /The difference of energy between the two sets of d-orbitals t_2g and e_g due to the presence of ligands in a definite geometry .	1
	OR	
	b) (ii) Δ_o < P, weak filed ligand Δ_o > P, strong field ligand	1/2 + 1/2
	c) Because the orbital splitting energies are not sufficiently large for forcing pairing / Due to low crystal field splitting energy.	1
30	a) (i)	
	NH3, Heat	
	CH₃COOH ← CH₃CONH₂	
		1
	Br ₂ /NaOH	
	CH ₃ NH ₂	
	(ii)	
	H ₂ /Pt	
	$CH_3-CH_2-C=N \xrightarrow{H_2/Pt} CH_3-CH_2-CH_2-NH_2$	1
	(or by any other method)	_
	b) Aniline undergoes resonance and as a result the electrons on the N-atom are less available for donation.	1
	c) (i) $(CH_3)_3N < CH_3NH_2 < (CH_3)_2NH$	1
	OR	
	c) (ii) $A = C_6H_5NH_2$; $B = = C_6H_5N_2^+CI$	1/2 + 1/2
	SECTION E	
31	(a) (i)	
	(I) Because Mn ²⁺ is more stable than Mn ³⁺ due to extra stable half-filled d ⁵ configuration.	1
	(II) Due to comparable energies of 5f, 6d and 7s orbitals (III) Due to the involvement of greater number of electrons from (n-1)d in addition to the ns	1
	electrons in the inter-atomic metallic bonding. (ii)	1
	(1) $5SO_3^{2-} + 2MnO_4^{-} + 6H^{+} \longrightarrow 2Mn^{2+} + 3H_2O + 5SO_4^{2-}$	1
	(II) $2MnO_4^- + H_2O + I^- \longrightarrow 2MnO_2 + 2OH^- + IO_3^-$	1
		1
	OR	
31	b)	
31	b) (i) Mn, Zn, Ni, Cu (any two)	1/2 , 1/2
31	b) (i) Mn, Zn, Ni, Cu (any two) (ii) K ₂ MnO ₄ , due to presence of one unpaired electron	1/2 , 1/2
31	b) (i) Mn, Zn, Ni, Cu (any two)	1

	(iv) It is prepared by fusion of MnO₂ with an alkali metal hydroxide and an oxidising	
	agent /	
	$2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$	1
	(v) because of the ability of oxygen to form multiple bonds with metal	1
32	(a) (i) (I) (CH₃)₃C-CHO (II)	1
	СН ₃ О 	1
	(III) CH ₃ -CO-CH ₂ CH ₂ CH ₃ (ii)	1
	$C = O \xrightarrow{Zn-Hg} CH_2 + H_2O$ (II)	1
	$\begin{array}{c} \text{CH}_3 \\ + \text{ CrO}_2\text{Cl}_2 \xrightarrow{\text{CS}_3} \end{array} \begin{array}{c} \text{CH(OCrOHCl}_2)_2 \\ \xrightarrow{\text{H}_3\text{O}^*} \end{array} \begin{array}{c} \text{CHO} \end{array}$	1
	OR	
32.	(b) i) H OCH ₃ ii) Because semicarbazide undergoes resonance involving only one of the two - NH₂ groups,	1
	which is attached directly to the carbonyl-carbon atom. iii) CH ₃ CH ₂ OH CH ₃ CH ₂ OH CH ₃ CH ₂ OH Ethanal OH iv)	1
	v) P	1
	C NH	1
33	(a) (i) $E_{Cell} = (E^{o}_{c} - E^{o}_{a}) - \frac{0.059}{2} log \frac{[Zn^{2+}]}{[H^{+}]^{2}}$	1

	0.059 - 0.1	1
	$= [(0) - (-0.76)] - \frac{0.059}{2} log \frac{0.1}{(0.01)^{2}}$	1
	$= 0.76 - 0.0295 \log 10^3$	
	= 0.76 – 0.0885	
	= 0.6715 V or 0.67 V (Deduct ½ mark for no or incorrect unit)	1
	(ii) The amounts of different substances liberated by the same quantity of electricity	
	passing through the electrolytic solution are proportional to their chemical equivalent	
	weights.	1
	6F	1
	OR	
33	(b) (i)	
	$\Lambda_{m} = \frac{K}{C} \times 1000$	
	$m = c^{-1000}$	1/2
	2.40×10^{-2}	
	$\Lambda_m = \frac{2.48 \times 10^{-2}}{0.2} \times 1000$	
	0.2	
	$= 124 \text{S cm}^2 \text{mol}^{-1}$	1/2
		/2
	$\Lambda_m^{\circ} = \lambda_{C1}^{\circ} + \lambda_{C1}^{\circ}$	
	=73.5 +76.5	
	$= 150 \text{S cm}^2 \text{mol}^{-1}$	
	A_{m}	
	$\alpha = \frac{\Lambda_m}{\Lambda_m^*}$	1/2
	$=\frac{124}{}$	
	$= {150}$	
		1/2
	=0.827	/2
	(ii) $E^{0}_{cell} = E^{0}_{cathode} - E^{0}_{anode}$	1/2
	$= 0.34 \cdot (-2.37)$	
	=2.71V	1/2
	Δ _r G ⁰ = -nFE ⁰ _{cell}	1
	$= -2 \times 96500 \times 2.71$	1/2
	$= -523030 \text{ Jmol}^{-1} \text{ or } -523.03 \text{ kJmol}^{-1}$	1/2
	(iii)	1/2
	Primary cell	1/2
	Maintains constant potential throughout its usage/longer lifespan	/*

अंकन योजना २०२४-२८ स्माथन विज्ञान (सुद्धान्तिका) प्रशन पत्र कांड: 56/7/1

MM: 70

	मूल्य विद्	
Q.No	मुल्य बिंदु	Mark
4	(रवण्ड का)	1
1	A	1
2	D	1
3	В	1
4	C .	1
5 .	B	1
6	A	1
7	С	1
8	A	1
9	С	1
10	D ·	1
11	A	1
12	В	1
13	С	1
14	A	1
15	В	1
16	C	1
	(खण्ड ख)	
17	. अब विलयन का वाष्प दाव झा दर्श त्यवहार के	1
	अपित से आध्यक होता है। • उदाहरण: एथेनॉल व ऐसीरोन / कार्बन हाइसल्पाइल व ऐसीरोन (अभ्या अन्य कीई उपयुक्त उदाहरण) • न्यूबतम कवथनांकी स्थिरकवाथी	1/2
18	. यब ब्राई राव आश्वारम आह्म मात्रा में ही	1
	· इम्रु-2 किरो (सुक्रीस)/ एस्टर का जल उपहाटन (अथवा कार्य उपराक्त उपहाटन)	1/2
	(अथवा अन्म क्रांड उपयुक्त उदाहरण) 'प्राथमिक आक्राक्रिया के लिए, जी एक ही धरण में होती है।	1/2
19	(म) डाइक्लोरिडोबिस (एथेन - 1,2 - डाइऐमीन)प्लैटिनम्।	v) 1
	en Pt en CI	1

	. 2.9.7	
19	(24)i) [Co(NH ₃) ₅ (CO ₃)]Cl	
19	प्रे पन्टाएम्मीननाइरिटा - 0 - व्याखाल्ट (111)क्लाराइड क्योंकि C-X आवंध्य में अनुनाद के कारण आंध्रांका हिंक्स	1
20	क्योंकि C-X अवंध्य में अनुनाद के कारण आंध्रोक दिन्हा के निकारण आ जीते हैं/C-X अवंध्य के इन्रे संकारत कार्बन	1
	वे कारण आबंध की लम्बाई कम ही जाता है। (अथवा	अन्य
	ं नाइद्री क्रमह बेन्जीन वलय पर बलेक्ट्रान	
	द्यमत्व कन कर देता है। फलतः हेलो ऐरीन पर नाभिकराशीका आक्रमण स्वरल हो जाता है।	<u>i</u>
	इलेक्ट्रान - अपनमक होते हुर -NO2 समूह मह्यवती कार्व प्रेनामन को स्थायित्व प्रदान करता है।	•
21	· क्योंक श्रारकां के विश्वाबद युग्नी के मध्य हाइट्रॉजन आवंदा बनते हैं।	1
	. 5- रिसंक्सीराईबास रार्करा, द्वारम अंतर	1
	.पारपारिका अस्ल।	
	(खण्डेग) हत	
22	$\Delta T_f = iK_f m$	
	$\Delta T_f = \frac{1 \times K_f \times w_2 \times 1000}{M_2 \times w_1}$	1/2
	$0.45 = \frac{i \times 5.12 \times 0.3 \times 1000}{60 \times 30}$	1 *
	i = 0.527	1/2
	$\alpha = \frac{i-1}{1/n-1}$	1/2
	$\alpha = \frac{0.527 - 1}{1/2 - 1}$ (n=2) (3421) 34-24 and 3421 are $\alpha = 0.946 \text{ or } 94.6\%$	1/2
23	(का) लेड संचायक बेटरी	t
	Anode: $Pb(s) + SO_4^{2-}(aq) \rightarrow PbSO_4(s) + 2e^{-}$	
	Cathode: $PbO_2(s) + SO_4^{2-}(aq) + 4H^{+}(aq) + 2e^{-} \rightarrow PbSO_4(s) + 2H_2O(1)$	1
	312191	

	9.0 99 0 0 0 0 9	
23	मि वंशामि विशेष्ठ पर जीहान है मान वाला आभावित्या की	
	करीयन प्राप्त हाती है, अर इसिन्स म् व का मू (व) के	
	अपचयन की वरीयता प्राप्त होती है व -, व	1
	े रिनीड पर जल के आक्सोकरण के ट्रा (०१)क	
	ऑक्सीकरण की त्राला में वर्शयता मिलनी चाहिए, पस	
		७२७ ।
	NaCl(aq) + H ₂ O(l) → Na [†] (aq) + OH (aq) + ½H ₂ (g) + ½Cl ₂ (g)	
24	$2N_2O_5(g) \rightarrow 2N_2O_4(g) + O_2(g)$	•
	Start $t = 0$ Pi atm 0 atm 0 atm At time t (Pi - 2x) atm 2x atm x atm	
	$P_t = P_i - 2x + 2x + x = P_i + x$	
•	$x = P_{t} - P_{i}$	
	$p_A = P_i - 2x$ = $P_i - 2(P_t - P_i)$	
	$=3P_{i}-2P_{t}$	
	0.202 7	
	$k = \frac{2.303}{t} \log \frac{p_1}{p_A}$	1
	Where pi=0.5 atm,	
	$p_A = 3p_i - 2p_t$	
	= (3X 0.5)-(2x0.625) =0.25atm	
		1
	$= \frac{2.303}{100 \text{s}} \log \frac{0.5 \text{atm}}{0.25 \text{atm}}$	*
	$=\frac{2.303}{1.000} \times 0.3010$	-
	100s	1
	$= 6.93 \times 10^{-3} \text{s}^{-1}$	
25	A= .	
	$CH_3 - CH - CH_2 - 1$	1/
	CH3	1/2
	B=	
	$CH_3 - C = CH_2$	
	CH ₃	-
	C=	1/2
	I	
	$CH_3 - CH - CH_3$	
	Ċн ₃	1/2
	D=	
	CH ₃ CH CH ₂ CH CH ₃	
	CH ₃ CH ₃	1/2

		Γ
	$CH_3 - CH - CH_2 - 1 \xrightarrow{KOH(ale)/\Delta} CH_3 - C = CH_2 + KI + H_2O$	
	CH ₃	1
26	(क) CH₃I +	1
	O_2N O_2 OO_2	1
	NO_2	
	СН•ОН	1
27	(क) क्यों के कार्बोक्सिल समुह निष्क्रियक समुह है एवं उत्प्रेरक ऐ लुभिनियम क्लोराइड (लूईस अम्म)कार्बोक्सिल	`
	समूह से आं नांदोत हो जाता है (लवण ननाता है) दिव) क्यों कि भटमा का कार्बनिल कार्बन टमर्टमा की तलना में	1
	अधिक इलेक्ट्रॉन्सिंगी है / नेथिल के 1 प्रभाव के कारण / नेथिल समूह के त्रिविम सभाव के कारण, Снзсно कम अभिक्रियाशील है।	1
	(अ) ऐसा लाबों निल समूह से संलि बनेत के संकारित कार्बन की उच्च विद्युत कृणात्मकता के कारण होता है।	
28	di)	
	Сно Сн³он Сн³он Сн³он	1
	сно соон (снон), (снон),	
	снон валам снон	1
	CHO CHO O	
	(CHOH), ————————————————————————————————————	1
	(zaus EI)	
29	(क) tag डी शका अयुष्टिमत इतेक ट्रॉन की उपस्थिति की कारण औ	

	उत्ति होकर ८ में मेली जाता है। / ६ में १ ९ अते जैन अनी के कावण यह वन देता है। (०-० संक्रमण) अग्रम भवने पर जल निकल जाता है, इसलिश क्रिस्टल इनेत्र विपाटन नहीं होता और यह रंगहीन हो जाता है। (२०) अपश्राप्टल-कहानों को कहानों के दो समुख्य (६० अपश्राप्टल करने के लिए आवश्यक अर्जी,	1.
	अरि eq) में विपादन करने के लिए आवश्यक अर्जी लिंगन्डों की निश्चित ज्यामिति में उपरिश्वति से ब-कक्षकों स्वार्व eq के यो समुख्यों की अर्जी में अंतर)
	(र्न)(ii) ८०८ १ दुबल क्षेत्र लिंगल्ड , ८०२ १ युबल क्षेत्र लिंगल्ड । (ज्ञ) त्र्योलि क्ष्रमों की विपाटन अर्जी इस्ती अधिक नहीं होती जो इसेन्द्र को सुरुष्ठन के लिए बाह्य को किला क्रिस्ट्रल क्षेत्र विपाटन ऊर्जा के कारण	前
30 ((A) (i)	
	CH ₃ COOH CH ₃ CONH ₂	
	Br ₂ /NaOH	1
	CH ₃ NH ₂	
	(ii) H ₂ /Pt	
	CH,-CH,-C=N ——→ CH,-CH,-NH, (अथवा अन्य कोर्ब उपयुक्त	1
	(श्व) ऐनिलीन अनुमार्क करता है जिसके परिणासूर वरूप N-परभाण	1
	्पन उपार्चात इलक्द्रान अदान करम के लिए कम उपलब्ध	1 .
	(গ) (cH₃)₃Ñ < cH₃NH₂< (cH₃)₂NH ঃ স্লাহ্মনা	_
	c) (ii) $A = C_6H_5NH_2$; $B = = C_6H_5N_2^+Cl$	1/2 + 1/2
31	क्री।(1) क्यों के अर्ध-भारत वर्ष बिन्यास के अतिरिक्त स्थारी होने	
	के कारण भारते भे अद्भाव स्थायी है।	1
	(II) 5 र्र ६० तथा ७५ का अने की असतल्य रूजी के कारण।	1
	(in) अत्रापरभाणिक धारित्व बंधन में ns इतेन्द्रॉन के अतिरिक्त (m-Da कक्षकों के अधिक इतेन्द्रॉने की	
	अतिविन्त (m-Da कश्रकों के अधिक इलेक्ट्रांनी की	1
	भागीदारी के कारण।	
	(ii)	
	$\begin{vmatrix} (ii) \\ (l) & 5SO_3^{2-} + 2MnO_4^{-} + 6H^4 \longrightarrow 2Mn^{2+} + 3H_2O + 5SO_4^{2-} \end{vmatrix}$	
	$ _{()} 2MnO_4^- + H_2O + \Gamma \longrightarrow 2MnO_2 + 2OH^- + IO_3^-$	
	उ121वा	I.
31	(i) Mn, Zn, Ni, Cu (कोई दो)	1++
510	age	''

	लं) Kampu, रक अथुक्रिंग इलेक्ट्रॉन की उपरिष्ठात के कारण	1+1
	(ii) 4d एवं 5d तत्वों की श्रेणी की संभाग जिन्यारं/समान गणियम तैन्धेनाँघडों के पृथ्वकरण भें महिनता (अथवाकोई अन्य	1 - "
	त्नन्थनायडा के पृथ्वकरण में कार्ठनता (अथवाकोई अन्य	1
	(iv) 2MnO₂ + 4KOH + O₂ → 2K₂MnO₁ + 2H₂O / स्नासंभिक पिरणाम) धात हाइड्रॉक्साइड तथा साक्सीकारक के साथ संगतित	
	शात हाइडॉक्साइड तथा साम्यास MnO2 की क्षारीय	
	कर खनाया जाता है।	
	(V) ऑक्सीजन भी हाति के साथ बहुआवहा बनाने की क्षांत्रता के कारण	1
32	(An) (i)	
	(I) (CH₃)₃C-CHO	1
	(II)	1
	CH ₃ O	_
	H ₃ C —CH ₂ —CH —C —H	
	(III) CH ₃ -CO-CH ₂ CH ₂ CH ₃	1
	(ii)	
	$C=O \xrightarrow{Zn-Hg} CH_2 + H_2O$	
	(I) HCI + H ₂ O	1
	(11)	,
		1
	CH ₃ CH(OCrOHCl ₂) ₂ H ₃ O' CHO	1
	$+ \operatorname{CrO_2Cl_2} \xrightarrow{\operatorname{CS_2}} \bigoplus \xrightarrow{\operatorname{H_3O'}} \bigoplus$	
25	3-12(1)	
32.	(2)	
	н он	1
	H OCH , O & 2 के वे केवल कर -NH अंशह के	
	॥ क्योंकि सेमीकाबेज़इड दो में से बेवल रक्त -NH2 समूह के साथ अनुनाद करता है जो सी हो का बोनिल-कार्हीन परमाणु	1
	साथ अनुनिष् कर्ता हुंजा सोद्य का बा निल-का हा न परमाणु	_
	से जुड़ा होता है।	
	iii)	
	CrO ₃ ddi, NaOH	1
	CH₃CH₂OH → 2 CH₃-CHO ← CH₃-CH-CH₃-CHO	
	Ethanal OH	
	iv) c	
		1
	v)	
		1

<u></u>		
	NH	
	C/	
	Ö	
33	्रा (i) 0.059 [Zn²+]	1
	$E = (E^{o}_{c} - E^{o}_{a}) - \frac{0.059}{2} \log \frac{[Zn^{2+}]}{[H^{+}]^{2}}$	
	0.000	1
	$= 0.76 - 0.0295 \log 10^3$	
	$= [(0) - (-0.76)] - \frac{0.059}{2} log \frac{0.1}{(0.01).^{2}}$ $= 0.76 - 0.0295 log 10^{3}$ $= 0.76 - 0.0885$ $= 0.6715 V \text{ or } 0.67 V$ $= 0.6715 V \text{ or } 0.67 V$	1
	00 म निवास की मंत्राव की मंत्राव	
	= [(0) - (-0·76)]- $\frac{0.059}{2} log \frac{0.1}{(0.01).2}$ = 0.76 - 0.0295 log 10 ³ (इकाई अलत या ना देने पर = 0.76-0.0885 = 0.6715 V or 0.67 V /2 अंक कार दें) (ii) विभिन्न वैद्युत अपद्यदनी विलयनों में विद्युत की संग्रान मात्रा प्रवाहित करने पर भुकत विभिन्न पदार्थी की जातारं उनके राज्यामीन तुल्यांकी दृष्यभान के संभानुपाती होता है।	
	गति विवाहत करने पर सुकता वाकान पदाया वा गारी र	
	2) 2/21/21/01/21 (15: 41/21) CASTON (15: 41/21)	,
	• 6F	1
	312(व)	
33	₹ (i)	
	$\Lambda_{m} = \frac{\kappa}{c} \times 1000$	1/2
	2.48×10^{-2}	
	$\Lambda_m = \frac{2.48 \times 10^{-2}}{0.2} \times 1000$	
	$= 124 \text{S cm}^2 \text{mol}^{-1}$	1/2
	$\Lambda_m^{\circ} = \lambda_{\kappa'}^{\circ} + \lambda_{cl}^{\circ}$	
	=73.5 +76.5	
	$= 75.5 + 76.5$ $= 150 \text{ S cm}^2 \text{ mol}^{-1}$	
	$\alpha = \frac{A_m}{A_m^*}$	1/2
	124	
	$={150}$	
	=0.827	1/2
	(ii) E ⁰ _{cell} = E ⁰ _{cathode} - E ⁰ anode	1/2
	= 0.34-(-2.37) =2.71V	1/2
	$\Delta_{\rm r}G^0 = -nFE_{\rm cell}^0$ = -2 X 96500 X 2.71	1/2
L	A STATE OF THE STA	•

= -523030 Jmol ⁻¹ or -523.03 kJmol ⁻¹	
(iii) · साय्यिक रनेल	1/2
• अपने संपूर्ण अनिध्नाल में विश्वव को रिश्वर बनाश	玉
	4
र्या है / लंबा जीवनकाल	3.