

Series: WYXZ6

प्रश्न-पत्र कोड Q.P. Code

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

क्पया जाँच कर लें कि इस प्रश्न-पत्र में मृद्रित पृष्ठ 23 हैं। (I)

Please check that this question paper contains 23 printed pages.

प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर (II)लिखें ।

Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

(III) कपया जाँच कर लें कि इस प्रश्न-पत्र में 33 प्रश्न हैं। Please check that this question paper contains 33 questions.

(IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथा स्थान पर प्रश्न का क्रमांक अवश्य लिखें।

Please write down the Serial Number of the question in the answer-book at the given place before attempting it.

(V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पर्ढ़ेंगे और इस अवधि के दौरान वे उत्तर-पस्तिका पर कोई उत्तर नहीं लिखेंगे।

15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not

write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे

Time allowed: 3 hours

अधिकतम अंक : 70

Maximum Marks: 70

56/6/1 1

सामान्य निर्देश :

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में **33** प्रश्न हैं। **सभी** प्रश्न **अनिवार्य** हैं।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **खण्ड क, ख, ग, घ,** एवं **ङ**।
- (iii) खण्ड क प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) **खण्ड ख** प्रश्न संख्या **17** से **21** तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न **2** अंकों का है।
- (v) **खण्ड ग** प्रश्न संख्या **22** से **28** तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न **3** अंकों का है।
- (vi) खण्ड u प्रश्न संख्या 29 तथा 30 केस-आधारित प्रश्न हैं। प्रत्येक प्रश्न 4 अंकों का है।
- (vii) खण्ड ङ प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड क के अतिरिक्त अन्य सभी खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग **वर्जित** है।

खण्ड क

प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के 1 अंक के प्रश्न हैं।

 $16 \times 1 = 16$

- 1. असमित ईथर विरचन की विलियम्सन संश्लेषण विधि है :
 - (A) $S_N 1$ अभिक्रिया
 - (B) $S_N 2$ अभिक्रिया
 - (C) इलेक्ट्रॉनरागी योगज अभिक्रिया
 - (D) विलोपन अभिक्रिया
- 2. निम्नलिखित यौगिकों में से कौन-सा जलीय KOH द्वारा सर्वाधिक आसानी से जल-अपघटित होगा ?
 - (A) $CH_2 = CH Br$
 - $(\mathrm{B}) \qquad \mathrm{CH_3} \mathrm{CH_2} \mathrm{Br}$
 - $\begin{array}{cc} \text{(C)} & \text{CH}_3 \text{CH} \text{CH}_3 \\ & | \\ & \text{Br} \end{array}$
 - (D) $CH_2 = CH CH_2 Br$

General Instructions:

Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into **five** sections **Section A**, **B**, **C**, **D** and **E**.
- (iii) **Section A** questions number **1** to **16** are multiple choice type questions. Each question carries **1** mark.
- (iv) **Section B** questions number **17** to **21** are very short answer type questions. Each question carries **2** marks.
- (v) **Section C** questions number **22** to **28** are short answer type questions. Each question carries **3** marks.
- (vi) **Section D** questions number **29** and **30** are case-based questions. Each question carries **4** marks.
- (vii) **Section E** questions number **31** to **33** are long answer type questions. Each question carries **5** marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the sections except Section A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculator is **not** allowed.

SECTION A

Questions no. 1 to 16 are Multiple Choice type Questions, carrying 1 mark each. $16 \times 1=16$

- **1.** Williamson synthesis of preparing unsymmetrical ether is:
 - (A) S_N1 reaction
 - (B) $S_N 2$ reaction
 - (C) Electrophilic addition reaction
 - (D) Elimination reaction
- **2.** Which of the following compounds would be hydrolysed by aqueous KOH most easily?
 - (A) $CH_2 = CH Br$
 - (B) $CH_3 CH_2 Br$
 - $\begin{array}{cc} (\mathrm{C}) & \mathrm{CH}_3 \mathrm{CH} \mathrm{CH}_3 \\ & | \\ & \mathrm{Br} \end{array}$
 - (D) $CH_2 = CH CH_2 Br$

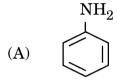
3.	उपसहसंयोजन	यौगिकों	के वर्नर	सिद्धांत	के अनसार :
u.	24(16(1414))	411.144	41 4.11	1/18/1/1	47 OF KITCHE.

- (A) प्राथमिक संयोजकताएँ आयननीय होती हैं।
- (B) द्वितीयक संयोजकताएँ आयननीय होती हैं।
- (C) प्राथमिक और द्वितीयक दोनों संयोजकताएँ अन-आयननीय होती हैं।
- (D) प्राथमिक और द्वितीयक दोनों संयोजकताएँ आयननीय होती हैं।

4. निम्नलिखित में से कौन-सा संकुल आयन ध्रुवण घूर्णक **नहीं** है ?

- (A) $[Co(ox)_3]^{3-}$
- (B) समपक्ष- $[\mathrm{Co(en)}_2\mathrm{Cl}_2]^+$
- (C) विपक्ष- $[Co(en)_2Cl_2]^+$
- (D) $[Co(en)_3]^{3+}$

5. निम्नलिखित में से कौन-सी सबसे कोमल धातु है ?

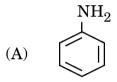

- (A) Zn
- (B) Sc
- (C) Cu
- (D) Fe

- **3.** According to Werner's theory of coordination compounds :
 - (A) Primary valences are ionisable.
 - (B) Secondary valences are ionisable.
 - (C) Both primary and secondary valences are non-ionisable.
 - (D) Both primary and secondary valences are ionisable.
- **4.** Which of the following complex ion is *not* optically active?
 - (A) $[Co(ox)_3]^{3-}$
 - (B) cis-[Co(en)₂Cl₂]⁺
 - (C) trans-[Co(en)₂Cl₂]⁺
 - (D) $[\text{Co(en)}_3]^{3+}$
- **5.** Which of the following is the softest metal?
 - (A) Zn
 - (B) Sc
 - (C) Cu
 - (D) Fe

6. प्राथमिक, द्वितीयक और तृतीयक ऐमीनों के पृथक्करण की हिन्सबर्ग विधि में प्रयुक्त अभिकर्मक है :

- (A) नाइट्रस अम्ल
- (B) CHCl₃ + जलीय NaOH
- (C) $\langle \underline{\hspace{0.2cm}} \rangle$ \longrightarrow SO_2Cl
- $(\mathrm{D}) \quad \operatorname{HCl} / \operatorname{ZnCl}_2$

7. निम्नलिखित ऐमीनों में से कौन-सी HNO_2 के साथ अभिक्रिया करके ऐल्कोहॉल देती है ?



- (B) $C_2H_5NH_2$
- (C) $(C_2H_5)_2NH$
- (D) $(C_2H_5)_3N$

8. एक मोलल KCl विलयन का हिमांक, यह मानते हुए कि KCl जल में पूर्णतया वियोजित हो गया, है : (जल के लिए ${
m K_f}=1.86~{
m K~kg~mol}^{-1}{
m)}$

- (A) -3.72° C
- (B) + 3.72°C
- $(C) 1.86^{\circ}C$
- (D) + 2.72°C

- **6.** In the Hinsberg's method for separation of primary, secondary and tertiary amines, the reagent used is:
 - (A) Nitrous acid
 - (B) $CHCl_3 + aq. NaOH$
 - (C) $\langle \underline{\hspace{0.2cm}} \rangle$ SO₂Cl
 - (D) HCl / ZnCl₂
- 7. Which one of the following amines gives an alcohol on reaction with HNO_2 ?

- (B) $C_2H_5NH_2$
- (C) $(C_2H_5)_2NH$
- (D) $(C_2H_5)_3N$
- 8. The freezing point of one molal KCl solution, assuming KCl to be completely dissociated in water, is : $(K_f \text{ for water} = 1.86 \text{ K kg mol}^{-1})$
 - (A) -3.72° C
 - (B) + 3.72°C
 - $(C) 1.86^{\circ}C$
 - (D) $+ 2.72^{\circ}C$

_		7. 1 0 1	7
9.	एथनाल	म एसाटान	का विलयन :

- (A) राउल्ट नियम का पालन करता है।
- (B) एक आदर्श विलयन बनाता है।
- (C) राउल्ट नियम से धनात्मक विचलन प्रदर्शित करता है।
- (D) राउल्ट नियम से ऋणात्मक विचलन प्रदर्शित करता है।

10. निम्नलिखित में से कौन-सा सेल ईंधन की दहन ऊर्जा को विद्युत ऊर्जा में परिवर्तित कर देता है ?

- (A) मर्क्यूरी सेल
- (B) ईंधन सेल
- (C) शुष्क सेल
- (D) लेड संचायक सेल

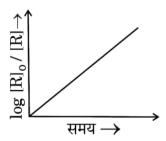
11. निम्नलिखित में से किसके लिए वेग और वेग स्थिरांक की इकाई समान हैं?

- (A) प्रथम कोटि अभिक्रिया
- (B) द्वितीय कोटि अभिक्रिया
- (C) शून्य कोटि अभिक्रिया
- (D) तृतीय कोटि अभिक्रिया

12. निम्नलिखित में से किसके बीच अभिक्रिया के कारण ग्लूकोस, पाइरैनोस वलय बनाता है ?

- (A) C_1 और C_3
- (B) C_1 और C_5
- (C) C₁ और C₄
- (D) C₁ और C₂

		DIG44
9.	A so	lution of acetone in ethanol :
	(A)	obeys Raoult's law.
	(B)	forms an ideal solution.
	(C)	shows a positive deviation from Raoult's law.
	(D)	shows a negative deviation from Raoult's law.
10.	Whic	ch of the following cell converts the energy of combustion of fuel into
	elect	rical energy ?
	(A)	Mercury cell
	(B)	Fuel cell
	(C)	Dry cell
	(D)	Lead storage cell
11.	The	unit of rate and rate constant are same for a :
	(A)	First order reaction
	(B)	Second order reaction
	(C)	Zero order reaction
	(D)	Third order reaction
12.	Pyra	nose ring of glucose is formed due to the reaction between:
	(A)	C_1 and C_3
	(B)	C_1 and C_5
	(C)	C_1 and C_4
	(D)	C ₁ and C ₂


प्रश्न संख्या 13 से 16 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए।

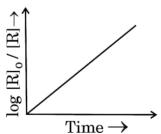
- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या **नहीं** करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (D) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।
- **13.** अभिकथन (A) : ऐक्टिनॉयड ऑक्सीकरण अवस्थाओं का वृहद परास दर्शाते हैं। कारण (R) : ऐक्टिनॉयड रेडियोसक्रिय प्रकृति के होते हैं।
- **14.** अभिकथन (A): एस्टर का जल-अपघटन प्रथम कोटि बलगतिकी का अनुसरण करता है। कारण (R): अभिक्रिया के दौरान जल की सांद्रता में अधिक परिवर्तन नहीं होता है।
- **15.** अभिकथन (A) : $\operatorname{CH_3CH_2CH_2NH_2}$ की तुलना में $(\operatorname{CH_3)_3N}$ का क्वथनांक उच्चतर होता है। कारण (R) : $\operatorname{CH_3CH_2CH_2NH_2}$ में हाइड्रोजन आबंधन अधिक व्यापक रूप से होता है।
- **16.** अभिकथन (A) : एथेनॉल की तुलना में फ़ीनॉल प्रबल अम्लीय होता है । कारण (R) : एथॉक्साइड आयन की तुलना में फ़ीनॉक्साइड आयन अधिक स्थायी होता है ।

खण्ड ख

- 17. हेनरी का नियम बताइए। जलीय स्पीशीज़ के लिए गर्म जल की तुलना में ठंडे जल में रहना अधिक आरामदायक क्यों है ?
- **18.** दिए गए चित्र में दर्शाए ग्राफ का प्रेक्षण कीजिए और निम्निलिखित प्रश्नों के उत्तर दीजिए : 1+1=2

2

- (क) अभिक्रिया कोटि की प्रागुक्ति कीजिए।
- (ख) वक्र की ढाल क्या है?



For Questions number 13 to 16, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- **13.** Assertion (A): Actinoids show wide range of oxidation states. Reason (R): Actinoids are radioactive in nature.
- 14. Assertion (A): Hydrolysis of an ester follows first order kinetics. Reason (R): The concentration of water does not get altered much during the reaction.
- **15.** Assertion(A): Boiling point of $(CH_3)_3N$ is higher than that of $CH_3CH_2CH_2NH_2$.
 - Reason (R): Hydrogen bonding is more extensive in $CH_3CH_2CH_2NH_2$.
- **16.** Assertion (A): Phenol is strongly acidic as compared to ethanol. Reason (R): Phenoxide ion is more stable than ethoxide ion.

SECTION B

- **17.** State Henry's law. Why are aquatic species more comfortable in cold water as compared to warm water?
- 18. Observe the graph in the given figure and answer the following questions: 1+1=2

- (a) Predict the order of reaction.
- (b) What is the slope of the curve?

2

19. (क) निम्नलिखित उपसहसंयोजन यौगिकों के IUPAC नाम लिखिए:

1+1=2

- (i) $[CoCl_2(en)_2]SO_4$
- (ii) $K_3[Fe(C_2O_4)_3]$

अथवा

(ख) निम्नलिखित के बीच अंतर स्पष्ट कीजिए:

1+1=2

- (i) द्वि लवण तथा संकुल यौगिक
- (ii) द्विदंत्र लिगन्ड तथा उभदंती लिगन्ड
- 20. निम्नलिखित प्रत्येक अभिक्रिया के मुख्य मोनोहैलो उत्पादों की संरचनाएँ बनाइए :

1+1=2

$$(4) \qquad \qquad + \text{ HI} \longrightarrow 3$$

(ख)
$$+ \operatorname{Br}_2 \xrightarrow{\operatorname{\mathfrak{S}^{\operatorname{supl}}}} \operatorname{\mathfrak{S}^{\operatorname{supl}}}$$
 पराबैंगनी प्रकाश

21. आप निम्नलिखित को कैसे समझाएँगे ?

1+1=2

- (क) ग्लूकोस में ऐल्डिहाइड समूह की उपस्थिति।
- (ख) ग्लूकोस में पाँच OH समूहों की उपस्थिति।

खण्ड ग

22. 298 K पर शुद्ध जल का वाष्प दाब $24.8~\mathrm{mm}$ Hg है। किसी जलीय विलयन के वाष्प दाब में अवनमन का परिकलन कीजिए, जो $-0.3^{\circ}\mathrm{C}$ पर हिमीभूत हो जाता है। 3 (जल के लिए $\mathrm{K_f} = 1.86~\mathrm{K~kg~mol}^{-1}$)

- **19.** (a) Write IUPAC names of the following coordination compounds: 1+1=2
 - (i) $[CoCl_2(en)_2]SO_4$
 - (ii) $K_3[Fe(C_2O_4)_3]$

OR

(b) Differentiate between:

1+1=2

- (i) Double salt and Complex compound
- (ii) Didentate ligand and Ambidentate ligand
- **20.** Draw the structures of major monohalo products in each of the following reactions: 1+1=2

(a)
$$CH_3 + HI \longrightarrow 5$$

(b)
$$+ Br_2 \xrightarrow{\text{Heat or}} ?$$

21. How do you explain the following?

1+1=2

- (a) Presence of an aldehydic group in glucose.
- (b) Presence of five OH groups in glucose.

SECTION C

22. Vapour pressure of pure water at 298 K is 24·8 mm Hg. Calculate the lowering in vapour pressure of an aqueous solution which freezes at -0.3°C. (K_f of water = 1.86 K kg mol⁻¹)

3

23. अभिक्रिया

 $A + B \longrightarrow$ उत्पाद

के लिए अभिक्रिया वेग A और B को विभिन्न प्रारंभिक सांद्रताओं के फलन के रूप में नीचे दिया गया है।

प्रयोग	$[A] / mol L^{-1}$	[B] / mol L ⁻¹	प्रारंभिक वेग/ $\mathrm{mol}\ \mathrm{L}^{-1}\mathrm{min}^{-1}$
1	0.01	0.01	$5 imes 10^{-3}$
2	0.02	0.01	1×10^{-2}
3	0.01	0.02	5×10^{-3}

A और B के सापेक्ष अभिक्रिया कोटि की गणना कीजिए। अभिक्रिया का वेग स्थिरांक ज्ञात कीजिए।

3×1=3

3

- 24. निम्नलिखित के लिए कारण दीजिए:
 - (क) जलीय NaCl का वैद्युत-अपघटन करने पर उसके pH में वृद्धि हो जाती है।
 - (ख) शुष्क सेल के विपरीत, मर्क्यूरी सेल का सेल विभव इसकी संपूर्ण कार्य अवधि में स्थिर रहता है।
 - (ग) तन्ता के साथ विलयन की चालकता घटती है।
- **25.** (क) $[\mathrm{FeF}_6]^{3-}$ और $[\mathrm{Fe}(\mathrm{CN})_6]^{4-}$ संकुलों के विषय में निम्नलिखित के उत्तर दीजिए : $3 \times 1 = 3$
 - (i) प्रत्येक प्रकरण में सम्मिलित संकरण लिखिए।
 - (ii) उनमें से कौन-सा बाह्य कक्षक संकुल है और कौन-सा आंतरिक कक्षक संकुल है ?
 - (iii) उनके चुम्बकीय व्यवहार की तुलना कीजिए। [परमाणु क्रमांक : Fe = 26]

अथवा

- (ख) (i) संकुल $[\mathrm{Ti}(\mathrm{H_2O})_6]^{3+}$ के रंग को क्या होता है जब उसे धीरे-धीरे गरम किया जाता है ?
 - $({
 m ii})$ ${
 m d}^5$ आयन का इलेक्ट्रॉनिक विन्यास लिखिए यदि $\Delta_{
 m o}$ < ${
 m P}$ है ।
 - (iii) संकुल [Ni(CO)₄] के लिए संकरण और चुम्बकीय व्यवहार लिखिए। [परमाणु क्रमांक : Ni = 28]

3×1=3

3

26. $S_N 1$ और $S_N 2$ अभिक्रियाओं के बीच कोई दो अंतर लिखिए। निम्नलिखित यौगिकों में से कौन-सा $S_N 1$ अभिक्रिया तीव्रता से देगा और क्यों ?

23. The rate of a reaction :

 $A + B \longrightarrow product$

is given below as a function of different initial concentrations of A and B.

Experiment	$[A] / mol L^{-1}$	$[\mathrm{B}]$ / $\mathrm{mol}\ \mathrm{L}^{-1}$	Initial Rate/mol L ⁻¹ min ⁻¹
1	0.01	0.01	5×10^{-3}
2	0.02	0.01	1×10^{-2}
3	0.01	0.02	5×10^{-3}

Calculate the order of the reaction with respect to A and B. Determine the rate constant of the reaction.

24. Give reasons for the following:

3×1=3

3

- (a) The pH of aqueous NaCl increases when it is electrolysed.
- (b) Unlike dry cell, mercury cell has a constant cell potential through its lifetime.
- (c) Conductivity of solution decreases with dilution.

25. (a) Answer the following about the complexes

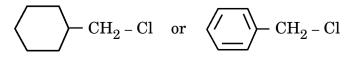
 $3 \times 1 = 3$

 $[FeF_6]^{3-}$ and $[Fe(CN)_6]^{4-}$:

- (i) Write the hybridization involved in each case.
- (ii) Which of them is the outer orbital complex and which one is the inner orbital complex?
- (iii) Compare their magnetic behaviour.

[Atomic number : Fe = 26]

OR


- (b) (i) What happens to the colour of complex $[{\rm Ti}({\rm H_2O})_6]^{3+}$ when heated gradually ?
 - (ii) Write the electronic configuration for d^5 ion if $\Delta_0 < P$.
 - (iii) Write the hybridization and magnetic behaviour of the complex $[Ni(CO)_4]$.

[Atomic number : Ni = 28]

 $3 \times 1 = 3$

3

26. Write any two differences between S_N1 and S_N2 reactions. Which of the following compounds would undergo S_N1 reaction faster and why?

27. C_4H_5N आण्विक सूत्र का कोई यौगिक (A) DIBAL-H के साथ अपचियत होने के बाद जल-अपघटित होकर यौगिक (B) देता है। यौगिक (B) धनात्मक टॉलेन्स परीक्षण देता है, परन्तु आयोडोफॉर्म परीक्षण नहीं देता है। एथेनैल को तनु NaOH के साथ अभिक्रियित करने के बाद गरम करने पर भी यौगिक (B) को प्राप्त किया जा सकता है। (A) तथा (B) की पहचान कीजिए। (A) की अभिक्रियाएँ लिखिए, पहले DIBAL-H के साथ और उसके पश्चात जल-अपघटन की।

3

28. आप ऐनिलीन से निम्नलिखित को कैसे प्राप्त करेंगे ? केवल रासायनिक समीकरण दीजिए।

 $3 \times 1 = 3$

- (क) सल्फैनिलिक अम्ल
- (ख) फ़ेनिलआइसोसायनाइड
- (ग) ऐसीटेनिलाइड

खण्ड घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं। केस को ध्यानपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए।

- 29. ऐल्कोहॉल ऐसी बहुत सी अभिक्रियाएँ देते हैं जिनमें C OH आबन्ध का विदलन सिम्मिलित होता है। यद्यपि फ़ीनॉल C OH आबंध के विदलन से सिम्मिलित अभिक्रियाएँ नहीं देते हैं। जल की अपेक्षा ऐल्कोहॉल दुर्बल अम्ल होते हैं। ऐल्कोहॉल, हैलोजेन अम्लों के साथ अभिक्रिया करके संगत हैलोऐल्केन बनाते हैं। ऐल्कोहॉलों की तुलना में फ़ीनॉल प्रबलतर अम्ल होते हैं। फ़ीनॉलों का एक विशिष्ट लक्षण यह है कि वे इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाएँ जैसे हैलोजनन, नाइट्रोकरण, आदि देते हैं। चूँकि OH समूह एक प्रबल सिक्रयक समूह है, अतः फ़ीनॉल हैलोजनन, नाइट्रोकरण, आदि के दौरान त्रिप्रतिस्थापित उत्पाद देते हैं।
 - (क) क्या होता है जब फ़ीनॉल निम्नलिखित के साथ अभिक्रिया करता है ?

2

(i) Br₂ जल

- (ii) सांद्र HNO_3
- (ख) (i) उस अभिक्रिया की क्रियाविधि लिखिए जिसमें ऐल्कोहॉल एक नाभिकरागी की भाँति CH_3^\oplus के साथ अभिक्रिया करता है।

1

अथवा

(ख) (ii) फ़ीनॉल C - OH आबंध विदलन की अभिक्रियाएँ क्यों नहीं देते ?

1

(ग) आप निर्जल $ZnCl_2$ की उपस्थिति में HCl का उपयोग करके ब्यूटेन-1-ऑल तथा 2-मेथिलप्रोपेन-2-ऑल में कैसे विभेद कर सकते हैं ?

1

27. A compound (A) with molecular formula C_4H_5N on reduction with DIBAL-H followed by hydrolysis, gives a compound (B). Compound (B) gives positive Tollens' test but does not give iodoform test. Compound (B) can also be obtained when ethanal is treated with dilute NaOH followed by heating. Identify (A) and (B). Write the reactions of (A) with DIBAL-H followed by hydrolysis.

3

- **28.** How will you obtain the following from aniline? Give chemical equations only. $3 \times 1 = 3$
 - (a) Sulphanilic acid
 - (b) Phenylisocyanide
 - (c) Acetanilide

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

- 29. Alcohols undergo a number of reactions involving the cleavage of C OH bond. However, phenols do not undergo reactions involving the cleavage of C OH bond. Alcohols are weaker acids than water. Alcohols react with halogen acids to form the corresponding haloalkanes. Phenols are stronger acids than alcohols. A characteristic feature of phenols is that they undergo electrophilic substitution reactions such as halogenation, nitration, etc. Since OH group is a strong activating group, phenol gives trisubstituted products during halogenation, nitration, etc.
 - (a) What happens when phenol is treated with the following?

2

- (i) Br₂ water
- (ii) Conc. HNO₃
- (b) (i) Write the mechanism of alcohol reacting as nucleophile in a reaction with $\operatorname{CH}_3^{\oplus}$.

1

OR

- (b) (ii) Why do phenols not undergo reactions involving cleavage of $C-OH\ bond\ ?$
- (c) How can you distinguish between Butan-1-ol and 2-Methylpropan-2-ol by using HCl in the presence of anhydrous ZnCl₂?

1

1

- 30. α-ऐमीनो अम्ल प्रोटीनों की संरचनात्मक इकाई हैं। सभी α-ऐमीनो अम्ल ज़्विटर आयन अथवा उभयाविष्ट आयन के रूप में विद्यमान होते हैं जिसके कारण वे उभयधर्मी प्रकृति दर्शाते हैं। सभी ऐमीनो अम्ल पेप्टाइड आबंध द्वारा जुड़े होते हैं। प्रोटीनों को गोलिकाकार प्रोटीन और रेशेदार प्रोटीन में वर्गीकृत किया गया है। गोलिकाकार प्रोटीन जल विलेय होते हैं, जबिक रेशेदार प्रोटीन जल विलेय नहीं होते हैं। प्रोटीनों की संपूर्ण संरचना का अध्ययन चार भिन्न स्तरों पर किया जाता है, यानि प्राथिमक, द्वितीयक, तृतीयक एवं चतुष्क संरचनाएँ। विकृतीकृत रूप में प्रोटीन अपनी जैविक सिक्रयता को खो देता है।
 - (क) निम्नलिखित की परिभाषा लिखिए:

2

(i) पेप्टाइड बंध

- (ii) विकृतीकृत प्रोटीन
- (ख) ऐमीनो अम्ल उभयधर्मी व्यवहार क्यों दर्शाते हैं ?

1

(ग) (i) आप रेशेदार प्रोटीन और गोलिकाकार प्रोटीन में कैसे अंतर कर सकते हैं ?

1

अथवा

(ग) (ii) प्रोटीनों की दो विभिन्न द्वितीयक संरचनाओं के नाम लिखिए।

1

खण्ड ङ

31. (क) (i) उस गैल्वैनी सेल का $E_{
m the}$ परिकलित कीजिए जिसमें $25^{\circ}{
m C}$ पर निम्नलिखित अभिक्रिया होती है :

$$Zn(s) + Pb^{2+}(0.02 \text{ M}) \longrightarrow Zn^{2+}(0.1 \text{ M}) + Pb(s)$$

[दिया गया है : $E_{Zn}^{\circ}{}_{/Zn}^{2+} = -0.76 \text{ V}, \quad E_{Pb}^{\circ}{}_{/Pb}^{2+}/_{Pb}^{2+} = -0.13 \text{ V};$
 $log 2 = 0.3010, \ log 4 = 0.6021, \ log 5 = 0.6990$]

(ii) फैराडे का विद्युत-अपघटन का प्रथम नियम बताइए। एक मोल ${
m MnO_4^-}$ को ${
m Mn}^{2+}$ आयन में अपचियत करने के लिए फैराडे के पदों में कितनी विद्युत की आवश्यकता होगी ? 3+2=5

अथवा

- (ख) (i) 298 K पर 0·001 M KCl विलयन से भरे हुए एक चालकता सेल का प्रतिरोध 1000 ओम है। यदि 0·001 M KCl विलयन की 298 K पर चालकता 0·125 × 10⁻³ S cm⁻¹ है, तो सेल स्थिरांक क्या है ?
 - $(ii)~~25^{\circ}{
 m C}~{
 m qr}$ नम्न अर्ध सेल के लिए ${
 m E}_{{
 m Mg}^{2+}/{
 m Mg}}^{}$ विभव परिकलित कीजिए :

$${
m Mg/Mg^{2+}}\,(1\times 10^{-4}\ {
m M});\ \ {
m E}_{
m Mg}^{\circ}{}^{2+}/{
m Mg}$$
 = + 2·36 V [दिया गया है : log 10 = 1]

(iii) धात्विक चालक के विद्युतीय चालकत्व पर ताप का क्या प्रभाव पड़ता है ? 2+2+1=5

- 30. The α -amino acids are the building blocks of proteins. All α -amino acids exist as zwitter ion due to which they show amphoteric behaviour. All amino acids are joined through peptide bond. Proteins are broadly classified as globular proteins and fibrous proteins. Globular proteins are water soluble, whereas fibrous proteins are not. The complete structure of protein is discussed at four different levels i.e. primary, secondary, tertiary and quaternary structures. Protein loses its biological activity in denatured form.
 - (a) Define the following:

2

- (i) Peptide linkage
- (ii) Denatured protein
- (b) Why do amino acids show amphoteric behaviour?

1

(c) (i) How can you differentiate between Fibrous protein and Globular protein?

1

OR.

(c) (ii) Write the names of two different secondary structures of proteins.

1

SECTION E

31. (a) (i) Calculate E_{cell} of a galvanic cell in which the following reaction takes place at $25^{\circ}C$:

 $\operatorname{Zn}(s) + \operatorname{Pb}^{2+}(0.02 \text{ M}) \longrightarrow \operatorname{Zn}^{2+}(0.1 \text{ M}) + \operatorname{Pb}(s)$

 $[Given: \ E_{Zn}^{\circ}{}^{2+}/_{Zn} = -\ 0.76\ V, \ \ E_{Pb}^{\circ}{}^{2+}/_{Pb} = -\ 0.13\ V;$

 $\log 2 = 0.3010$, $\log 4 = 0.6021$, $\log 5 = 0.6990$].

(ii) State Faraday's first law of electrolysis. How much electricity, in terms of Faraday, is required to reduce one mol of MnO₄⁻ to Mn²⁺ ion?

3+2=5

P.T.O.

OR

- (b) (i) The resistance of a conductivity cell containing 0·001 M KCl solution at 298 K is 1000 ohm. What is the cell constant if conductivity of 0·001 M KCl solution at 298 K is $0.125 \times 10^{-3} \, \mathrm{S \ cm^{-1}}$?
 - (ii) Calculate the E $_{\rm Mg^{2+}/Mg}$ potential for the following half cell at 25°C :

 ${
m Mg/Mg^{2+}}\,(1\times 10^{-4}\ {
m M});\ \ E^{\circ}_{{
m Mg^{2+}/Mg}} = +\,2{\cdot}36\ {
m V}$

[Given : log 10 = 1]

(iii) What is the effect of temperature on the electrical conductance of metallic conductor? 2+2+1=5

32. (क) (i) निम्नलिखित के लिए कारण दीजिए :

- (I) ${\rm Cr_2O_7}^{2-}$ आयन का नारंगी रंग पीले में परिवर्तित हो जाता है जब इसे क्षार के साथ अभिक्रियित किया जाता है।
- (II) Zn, Cd और Hg संक्रमणेतर तत्त्व हैं।
- (III) Mn^{3+}/Mn^{2+} युग्म के लिए E° का मान (+1·57 V) Cr^{3+}/Cr^{2+} के मान से बहुत अधिक धनात्मक होता है।
- (ii) क्या होता है जब :
 - (I) अम्लीय माध्यम में मैंगनेट आयन असमान्पातन अभिक्रिया देता है ?
 - (II) $KMnO_4$ को गरम किया जाता है ?

3+2=5

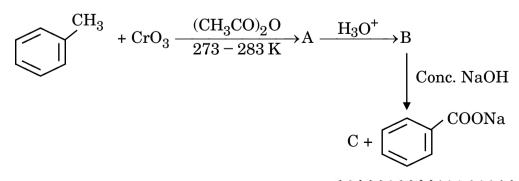
अथवा

(ख) निम्नलिखित प्रश्नों के उत्तर दीजिए:

 $5\times1=5$

- (i) 'मिश धातु' क्या है ? इसका एक उपयोग दीजिए।
- (ii) क्रोमियम के एक ऑक्सो-ऋणायन का सूत्र लिखिए जिसमें यह समूह संख्या के समान ऑक्सीकरण अवस्था दर्शाता है।
- (iii) वैनेडियम पेन्टॉक्साइड (V_2O_5) उत्प्रेरक की भाँति कार्य क्यों करता है ?
- (iv) संक्रमण तत्त्वों की कणन एन्थैल्पी उच्च क्यों होती है ?
- (v) Na $_2$ CrO $_4$ से आप Na $_2$ Cr $_2$ O $_7$ कैसे बनाएँगे ?
- **33.** (क) (i) निम्नलिखित अभिक्रियाओं में A, B और C की पहचान कीजिए :

- **32.** (a) (i) Account for the following:
 - (I) Orange colour of $Cr_2O_7^{2-}$ ion changes to yellow when treated with an alkali.
 - (II) Zn, Cd and Hg are non-transition elements.
 - (III) E° value for Mn^{3+}/Mn^{2+} couple is highly positive (+1.57 V) as compared to Cr^{3+}/Cr^{2+} .
 - (ii) What happens when:
 - (I) Manganate ion undergoes disproportionation reaction in acidic medium?
 - (II) KMnO₄ is heated?


3+2=5

OR

(b) Answer the following questions:

 $5 \times 1 = 5$

- (i) What is 'Misch metal'? Give its one use.
- (ii) Write the formula of an oxoanion of chromium in which it shows the oxidation state equal to its group number.
- (iii) Why does Vanadium pentoxide (V_2O_5) act as a catalyst?
- (iv) Why do transition elements have high enthalpies of atomisation?
- (v) How do you prepare $Na_2Cr_2O_7$ from Na_2CrO_4 ?
- **33.** (a) (i) Identify A, B and C in the following reactions:

(ii) निम्नलिखित के लिए कारण दीजिए :

(I) कार्बोक्सिलिक अम्ल, कार्बोनिल समूह की अभिलक्षणिक अभिक्रियाएँ नहीं देते हैं।

(II) एथेनॉल की तुलना में एथेनॉइक अम्ल प्रबलतर अम्ल है।

3+2=5

अथवा

(ख) (i) निम्नलिखित अभिक्रियाओं में उत्पाद/उत्पादों को लिखिए :

$${\rm (I)} \qquad {\rm 2CH_3COOH} \xrightarrow{\quad P_4O_{10} \quad }$$

(II)
$$C-Cl$$
 + $(CH_3)_2Cd \rightarrow$

- (ii) निम्नलिखित अभिक्रियाओं में सिम्मलित अभिक्रिया लिखिए :
 - (I) वोल्फ-किश्नर अपचयन
 - (II) विकार्बोक्सिलकरण अभिक्रिया

3+2=5

- (ii) Give reasons for the following:
 - (I) Carboxylic acids do not give the characteristic reactions of carbonyl group.
 - (II) Ethanoic acid is a stronger acid than ethanol.

3+2=5

OR

(b) (i) Write the product(s) in the following reactions:

$$(I) \qquad 2CH_3COOH \xrightarrow{\quad P_4O_{10} \quad } heat$$

$$(II) \qquad \overbrace{ \begin{array}{c} \\ \\ \\ \\ \end{array}}^{O} \\ \text{C-Cl} \\ + (CH_3)_2Cd \rightarrow \\ \end{array}$$

(III)
$$CONH_2$$
 strong heating $CONH_2$

- (ii) Write the reaction involved in the following reactions:
 - (I) Wolff-Kishner Reduction
 - (II) Decarboxylation Reaction

3+2=5

Marking Scheme Strictly Confidential

(For Internal and Restricted use only)
Senior School Certificate Examination, 2024-25
SUBJECT NAME CHEMISTRY (Theory) -043

(Q.P.CODE 56/6/1) MM: 70

General Instructions: -

You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.

"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."

Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.

The Marking scheme carries only suggested value points for the answers

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.

Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.

If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.

If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".

No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

A full scale of marks _____(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.

Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on an answer.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying/not same.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)

Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.

Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.

Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.

The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

CHEMISTRY (Theory)- 043

MM: 70

QP CODE 56/6/1

Q.No	Value points	Mark
	SECTION A	1
1	В	1
2	D	1
3	A	1
4	C	1
5	A	1
6	С	1
7	В	1
8	A	1
9	С	1
10	В	1
11	С	1
12	В	1
13	В	1
14	A	1
15	D	1
16	A	1
	SECTION B	
17	 At a constant temperature, the solubility of a gas in a liquid is directly proportional to the partial pressure of the gas present above the surface of liquid or solution/ the partial pressure of the gas in vapour phase (p) is proportional to the mole fraction of the gas (x) in the solution 	1
	 Because the solubility of oxygen increases with decrease in temperature/ Because of low solubility of O₂ in warm water. 	1
18	a) First order	1
	b) Slope= k/ 2.303	1
19	 a) i) Dichloridobis(ethane-1,2-diamine)cobalt(IV) sulphate ii) Potassium trioxalatoferrate(III) 	1
	OR	
19	b) i) Double salts dissociate into simple ions while complex compounds do not dissociate completely into ions when dissolved in water. (Or any other suitable difference)	1
	ii) When a ligand binds through two donor atoms is called a didentate ligand while a unidentate ligand which has two different donor atoms and either of the two ligates in the complex is called ambidentate ligand.	1
20	a) Br	1
	b) O	1

21	 a) Glucose gets oxidised to six carbon carboxylic acid (gluconic acid) on reaction with a mild oxidising agent like bromine water. This indicates the presence as an aldehydic group / 	1
	CHO COOH	
	(CHOH), Br, water (CHOH),	
	CH ₂ OH CH ₂ OH	
	b) Acetylation of glucose with acetic anhydride gives glucose pentaacetate which confirms	
	the presence of five –OH groups /	
	CHO I Y	1
	(CHOH), Acetic anhydride → (CH-O-C-CH ₃),	
	сн,он	
22	$\Delta T_{\rm f} = K_{\rm f} {\rm m}$	1/2
	$m = \Delta T_f / K_f$	/2
	m= 0.3/1.86	1/2
	= 0.16m	/2
	$m = \frac{x_2 \times 1000}{M_A}$	
	M_A	
	$x_2 = \frac{0.16 X 18}{1000} = 2.88 X 10^{-3}$	1/2
		/2
	$\frac{p_1^0 - p_1}{p_1^0} = x_2$	
	$\frac{24.8 - p_1}{24.8} = 2.88 \times 10^{-3}$	1/2
	$p_1^0 - p_1 = x_2 p_1^0$	1/
	$p_1 - p_1 - x_2 p_1$	1/2
	$= 2.88 \times 10^{-3} \times 24.8 \text{ mm Hg}$	1/
23	= 0.07 mm Hg	1/2
	Rate = k [A] ^p [B] ^q	
	5.0×10^{-3} = k [0.01] ^p [0.01] ^q Eq 1	
	1.0×10^{-2} = k [0.02] ^p [0.01] ^q Eq 2	
	5.0×10^{-3} = k [0.01] ^p [0.02] ^q Eq 3	
	On Comparing (eq1) and (eq3)	
	1= (2) ^q	
	q = 0	1
	On Comparing (eq1) and (eq2)	
	(2) ¹ = (2) ^p	
	p = 1 Order w·r·t A = 1	1

	Order	w·r·t B= 0		
	From eq 1	W I'L B- O		
	· ·	-9		
	5·0 ×	10^{-3} = k [0.01] ¹ [0.01] ⁰		1/2
		$k = 0.5 \text{ min}^{-1}$		1/2
24	a) Becaus	e of the formation of NaOH / Due to	the formation of OH- ions.	1
	•	e the overall reaction does not involv		1
		tration can change during its life time	•	
	c) Becaus	e the number of ions per unit volume	e that carry current in a solution	1
	decrea			
5	a) [FeF ₆] ³			1/2+1/2
		$_{6}]^{4-}$ - $d^{2}sp^{3}$		
		-outer orbital complex		1/2+1/2
) ₆] ^{4–} - inner orbital complex		
		- paramagnetic		1/2+1/2
	[Fe(CN) ₆] ⁴⁻ -diamagnetic		
			OR .	
5	•	pecomes colourless/ colour slowly fac	les away	1
	b) t _{2g}	•		1
	c) sp	diamagnetic C. 1		1/2+1/2
6.		S _N 1	S _N 2	_ 1+1
		nimolecular	Bimolecular	_
		follows first order kinetics	It follows second order kinetics	_
		etention of configuration	Inversion of configuration	_
		acemisation occurs	No racemisation is seen	_
	С	akes place through formation of arbocation	Takes place through formation of transition state	
		ccurs in polar protic solvent	Occurs in polar aprotic solvent	_
		ate is independent of the	Rate is dependent on the	
	c	oncentration of the nucleophile.	concentration of the nucleophile.	
			(Any TWO)	
				1/2+1/2
	('_)-c	H ₂ – Cl		
		, because of the stability of	benzyl carbocation	
.7	A= CH₃CH=CHC	CN / But-2-ene nitrile	/	1
	_	:HO / But-2-enal		1
	CH₃CH=CHC			
		2. H ₂ O		1
8	a)			1 X3
	ÑН.	NH,HSO, NH		
		Y 1	2	
	_H,	50. 453-473 K	1	
			J	
	-	Ţ		
	b)	SO	,rı	
	b)			
	NH,	NC		
		Heat //		
	+ CF	ICl ₃ + 3KOH Heat	+ 3KCl + 3H ₂ O	
	+ CF	ICl₃ + 3KOH Heat	+ 3KCl + 3H ₂ O	
	+ CF	ICl₃ + 3ROH Heat	+ 3KCl + 3H ₂ O	

	(c)	
	رد) د	
	NH ₂ H-N-C-CH ₃	
	(CH,CO),Q	
	Pyridine	
	SECTION D	
29	a) i)	
	OH Br. I Pu	1
	Br	
	/ 2,4,6-Tribromophenol is formed	
	ii)	
	ÓН	
	O ₂ N NO ₂	
		1
	NO ₂ / 2,4,6-Trinitrophenol / Picric acid is formed.	
	b) (i)	
	$R-\overset{\downarrow}{O}-\overset{\downarrow}{H}+\overset{\downarrow}{C}-\longrightarrow R-\overset{\downarrow}{O}-\overset{\downarrow}{C}-\longrightarrow R-\overset{\downarrow}{O}-\overset{\downarrow}{C}-+H^{*}$	
	$R-O-H++C-\longrightarrow R-O-C-+H$	1
	OR	
	b)(ii) due to sp ² hybridisation leading to shorter bond length / Due to resonance leading to partial double bond character of C-OH bond	1
	c) 2-Methylpropan-2-ol gives turbidity immediately whereas butan-1-ol does not react.	1
20	() Altitude this interest of the control of the con	
30	a) (i) A linkage which joins amino acids through -CO-NH- bond (ii) When a protein in its native form, is subjected to physical change like change in	1
	temperature or chemical change like change in pH, it loses its biological activity.	
	 b) Due to zwitter ion formation which can react with both acids and bases./ Due to the presence of both carboxylic group and amino group. 	1
	c) (i) Fibrous protein: parallel polypeptide chain structure / insoluble in water	1
	Globular protein: spherical polypeptide chain structure/ soluble in water	
	(Any one difference) OR	
	c) (ii) α -helix and β -pleated sheet	1/2 + 1/2
21	SECTION E	
31	(a) (i) $E_{Cell} = (E^o{}_c - E^o{}_a) - \frac{0.059}{2} log \left[\frac{Zn^{2+}}{Pb^{2+}} \right]$	1
	$ \text{Cell} = (E \cdot c - E \cdot a) - \frac{1}{2} log \left[\frac{1}{pb^{2+}} \right] $ $= [(-0 \cdot 13) - (-0 \cdot 76)] - \frac{0 \cdot 059}{2} log \frac{0 \cdot 1}{0 \cdot 02}$	
	$= [(-0.76)] - \frac{100}{2} \log \frac{1}{0.02}$ $= 0.63 - 0.0295 \log 5$	1
	=0.63-0.0295 X 0.699	
	= 0.63-0.02	
	= 0.61V (Deduct ½ mark for no or incorrect unit)	1

	(ii)	
	The amount of chemical reaction which occurs at any electrode during electrolysis	1
	by a current is proportional to the quantity of electricity passed through the	
	electrolyte.	
	5F	1
	OR	
31	(b) (i)	
_	k= G*/R	1/2
	G* = k X R =0.125 X 10 ⁻³ X 1000	1
	=0.125 cm ⁻¹	1/2
		1
	(ii) $E_{Mg}^{2+}/Mg = E_{Mg}^{0} Mg^{2+}/Mg - \frac{0.059}{2} log \frac{1}{[Mg^{2+}]}$	1
	$= 2.36 \text{ V} - \frac{0.059}{2} \log \frac{1}{10^{-4}}$	1/
		1/2
	= 2.36- 0.0295 X 4 log 10	
	= 2.242 V	1/2
	(iii) It decreases with increase in temperature	1
32	(a) (i)	
	(I) Due to formation of chromate /CrO ₄ ²⁻ ion	1
	(II) Due to completely filled d-orbitals in ground state as well as oxidised state.	1
	(III) Because Mn ²⁺ is more stable due to stable 3d ⁵ configuration whereas Cr ³⁺ is more stable due	1
	to stable t_{2g}^3 configuration.	
	(ii)	
	(I) it changes to permanaganate ion / MnO ₄ is formed /	
		1
	$3MnO_4^{2-} + 4H^* \rightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$	-
	(II) Potassium manganate/ K ₂ MnO ₄ is formed /	
	I Limit of the Manual Teach of the New York of the Control of the	1
	$2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$	1
	OR	
32.	(b) i)	
	 An alloy of lanthanoid / an alloy of lanthanoid and iron with traces of S, C, Ca and Al. 	
	 An alloy of lanthanoid / an alloy of lanthanoid and iron with traces of S, C, Ca and Al. used in making bullets/shells/ lighter flint 	1/2 +1/2
		½ +½ 1
	 used in making bullets/shells/ lighter flint ii) CrO₄²⁻/ Cr₂O₇²⁻ 	_
	 used in making bullets/shells/ lighter flint ii) CrO₄²⁻/ Cr₂O₇²⁻ iii) variable oxidation state of vanadium / large surface area /Complex formation 	1
	 used in making bullets/shells/ lighter flint ii) CrO₄²⁻/ Cr₂O₇²⁻ iii) variable oxidation state of vanadium / large surface area /Complex formation iv) Because of large number of unpaired electrons in their atoms they have stronger interatomic 	1
	 used in making bullets/shells/ lighter flint ii) CrO₄²⁻/ Cr₂O₇²⁻ iii) variable oxidation state of vanadium / large surface area /Complex formation iv) Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction or strong metallic bonding 	1
	 used in making bullets/shells/ lighter flint ii) CrO₄²⁻/ Cr₂O₇²⁻ iii) variable oxidation state of vanadium / large surface area /Complex formation iv) Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction or strong metallic bonding v) by acidification of Na₂CrO₄/ 	1 1 1
	 used in making bullets/shells/ lighter flint ii) CrO₄²⁻/ Cr₂O₇²⁻ iii) variable oxidation state of vanadium / large surface area /Complex formation iv) Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction or strong metallic bonding v) by acidification of Na₂CrO₄/ 2Na₂CrO₄ + 2 H⁺ → Na₂Cr₂O₇ + 2 Na⁺ + H₂O 	1
3	 used in making bullets/shells/ lighter flint ii) CrO₄²⁻/ Cr₂O₇²⁻ iii) variable oxidation state of vanadium / large surface area /Complex formation iv) Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction or strong metallic bonding v) by acidification of Na₂CrO₄/ 	1 1 1
33	 used in making bullets/shells/ lighter flint ii) CrO₄²⁻/ Cr₂O₇²⁻ iii) variable oxidation state of vanadium / large surface area /Complex formation iv) Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction or strong metallic bonding v) by acidification of Na₂CrO₄/ 2Na₂CrO₄ + 2 H⁺ → Na₂Cr₂O₇ + 2 Na⁺ + H₂O (a) (i) 	1 1 1
3	 used in making bullets/shells/ lighter flint ii) CrO₄²⁻/ Cr₂O₇²⁻ iii) variable oxidation state of vanadium / large surface area /Complex formation iv) Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction or strong metallic bonding v) by acidification of Na₂CrO₄/ 2Na₂CrO₄ + 2 H⁺ → Na₂Cr₂O₇ + 2 Na⁺ + H₂O 	1 1 1
33	 used in making bullets/shells/ lighter flint ii) CrO₄²⁻/ Cr₂O₇²⁻ iii) variable oxidation state of vanadium / large surface area /Complex formation iv) Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction or strong metallic bonding v) by acidification of Na₂CrO₄/ 2Na₂CrO₄ + 2 H⁺ → Na₂Cr₂O₇ + 2 Na⁺ + H₂O (a) (i) 	1 1 1
33	• used in making bullets/shells/ lighter flint ii) $CrO_4^{2-}/Cr_2O_7^{2-}$ iii) variable oxidation state of vanadium / large surface area /Complex formation iv) Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction or strong metallic bonding v) by acidification of $Na_2CrO_4/2Na_2CrO_4+2H^* \rightarrow Na_2Cr_2O_7+2Na^*+H_2O$ (a) (i) CH(OCOCH ₃) ₁ A=	1 1 1
33	 used in making bullets/shells/ lighter flint ii) CrO₄²⁻/ Cr₂O₇²⁻ iii) variable oxidation state of vanadium / large surface area /Complex formation iv) Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction or strong metallic bonding v) by acidification of Na₂CrO₄/ 2Na₂CrO₄ + 2 H⁺ → Na₂Cr₂O₇ + 2 Na⁺ + H₂O (a) (i) 	1 1 1
33	• used in making bullets/shells/ lighter flint ii) $CrO_4^{2^2}/ Cr_2O_7^{2^2}$ iii) variable oxidation state of vanadium / large surface area /Complex formation iv) Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction or strong metallic bonding v) by acidification of $Na_2CrO_4/2Na_2CrO_4+2H^2 \rightarrow Na_2Cr_2O_7+2Na^2+H_2O$ (a) (i) CH(OCOCH ₃) A= CHO	1 1 1
33	• used in making bullets/shells/ lighter flint ii) $CrO_4^{2-}/Cr_2O_7^{2-}$ iii) variable oxidation state of vanadium / large surface area /Complex formation iv) Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction or strong metallic bonding v) by acidification of $Na_2CrO_4/2Na_2CrO_4+2H^* \rightarrow Na_2Cr_2O_7+2Na^*+H_2O$ (a) (i) CH(OCOCH ₃) ₁ A=	1 1 1
33	• used in making bullets/shells/ lighter flint ii) $CrO_4^{2^2}/ Cr_2O_7^{2^2}$ iii) variable oxidation state of vanadium / large surface area /Complex formation iv) Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction or strong metallic bonding v) by acidification of $Na_2CrO_4/2Na_2CrO_4+2H^2 \rightarrow Na_2Cr_2O_7+2Na^2+H_2O$ (a) (i) CH(OCOCH ₃) A= CHO	1 1 1
33	• used in making bullets/shells/ lighter flint ii) $CrO_4^{2^*}/Cr_2O_7^{2^*}$ iii) variable oxidation state of vanadium / large surface area /Complex formation iv) Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction or strong metallic bonding v) by acidification of Na_2CrO_4 / $2Na_2CrO_4 + 2 H^* \rightarrow Na_2Cr_2O_7 + 2 Na^* + H_2O$ (a) (i) CH(OCOCH ₃) ₁ A= CHO	1 1 1 1
33	• used in making bullets/shells/ lighter flint ii) CrO ₄ ²⁻ / Cr ₂ O ₇ ²⁻ iii) variable oxidation state of vanadium / large surface area /Complex formation iv) Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction or strong metallic bonding v) by acidification of Na ₂ CrO ₄ / 2Na ₂ CrO ₄ + 2 H ⁺ → Na ₂ Cr ₂ O ₇ + 2 Na ⁺ + H ₂ O (a) (i) CH(OCOCH ₃) ₂ A= CHO B= CHO	1 1 1
33	• used in making bullets/shells/ lighter flint ii) CrO ₄ ²⁻ / Cr ₂ O ₇ ²⁻ iii) variable oxidation state of vanadium / large surface area /Complex formation iv) Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction or strong metallic bonding v) by acidification of Na ₂ CrO ₄ / 2Na ₂ CrO ₄ + 2 H ⁺ → Na ₂ Cr ₂ O ₇ + 2 Na ⁺ + H ₂ O (a) (i) CH(OCOCH ₃) ₂ A= CHO CH ₂ OH	1 1 1 1
33	• used in making bullets/shells/ lighter flint ii) CrO ₄ ²⁻ / Cr ₂ O ₇ ²⁻ iii) variable oxidation state of vanadium / large surface area /Complex formation iv) Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction or strong metallic bonding v) by acidification of Na ₂ CrO ₄ / 2Na ₂ CrO ₄ + 2 H [*] → Na ₂ Cr ₂ O ₇ + 2 Na [*] + H ₂ O (a) (i) CH(OCOCH ₃) ₂ A= CHO B= CHO C= (ii)	1 1 1 1
33	• used in making bullets/shells/ lighter flint ii) CrO ₄ ²⁻ / Cr ₂ O ₇ ²⁻ iii) variable oxidation state of vanadium / large surface area /Complex formation iv) Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction or strong metallic bonding v) by acidification of Na ₂ CrO ₄ / 2Na ₂ CrO ₄ + 2 H ⁺ → Na ₂ Cr ₂ O ₇ + 2 Na ⁺ + H ₂ O (a) (i) A= CH(OCOCH ₃) ₂ A= CH ₂ OH C= (ii) (I) Because carbon of carboxyl group is less electrophilic due to resonance with -OH group.	1 1 1 1 1
3	• used in making bullets/shells/ lighter flint ii) CrO ₄ ²⁻ / Cr ₂ O ₇ ²⁻ iii) variable oxidation state of vanadium / large surface area /Complex formation iv) Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction or strong metallic bonding v) by acidification of Na ₂ CrO ₄ / 2Na ₂ CrO ₄ + 2 H [*] → Na ₂ Cr ₂ O ₇ + 2 Na [*] + H ₂ O (a) (i) CH(OCOCH ₃) ₂ A= CHO B= CHO C= (ii)	1 1 1 1

	OR	
33	(b) i) (I) CH ₃ -CO ₂ C-CH ₃ / (CH ₃ CO) ₂ O	1
	(III) C—CH.	1
		1
	C NH	1
	$C = O \xrightarrow{NH_2NH_2} C = NNH_2 \xrightarrow{KOH/ethylene glycol} CH_2 + N_2$	1
	R-COONa $\xrightarrow{\text{NaOH & CaO}}$ R-H + Na ₂ CO ₃ (II)	1

अंकन योजना 2024-25 रसायन विज्ञान (सेज्ञातिक - 043 OP CODE 56/6/1

MM: 70

Q.No	भ ल्या विद	3197
	र्रातार का	3147
1	В	1
2	D	1
3	A	1
4	С	1
.5	A	1
6	С	1
7	В	1
8	A	1
9	С	1
10	В	1
11	С	1
12	В	1
13	В	1
14	A	1
15	D	1
16	A	1
	२०७३ २व	-
17	• स्थिर ताप पर किसी शेस की इव में विलेयता कि अव अववा विलयत की सतह पर पड़ने वाले शैस के अंगिक हाक के समानुपाती होती है / किसी विलयत में शैस का मोल - अंग्र अस विलयत के आप्ति शिस है। किसी विलयत से अपर उपस्थित शेस के आंग्रिक दांक के समानुपाती होता है। • क्योंकि ताप में किसी के साथ आंक्सीतत की विलेपता वंद जाती है / क्योंकि शर्म जान के ला श्री का विलेपता वंद जाती है / क्योंकि शर्म जान श्री का विलेपता वंद जाती है / क्योंकि शर्म जा श्री का में श्री का व्यवना की का श्री का मार्थ	1
18	• GIM = 12,303)

		· · · · · · · · · · · · · · · · · · ·
	(अ) (1) डाइक्लो रिडो बिस (२ केन - 1,2-डाइयेत्रीन) को बाल्ट (1V) सल्फेट गोरे कियम इाइऑक्सेले टो फेरेट (11)	1
	3149)	
19	क्रिंगे द्विलावण कल में पूर्णक्य से साधारण अगमतें में विमोजित हो जाते हैं जावी में कुल में बुलों पर आमों में प्रणितमः विमोजित नहीं होते । (कोई अम उपमुक्त अंतर) (ग) काव लिगन्ड के हाता परमाणु ओं होरा परिवृद्ध हें सकता है तो मेसा लिगन्ड हिंदेतुर लिगन्ड वाहलाता है अवनि मकदेतुर लिगन्ड जिसमें के भिन दाता परमाणु होते हैं और उपसहसंगीनि में इनमें से कोई भी मक भाग लेता है तो उसे अमदंती लिगन्ड कहते हैं।	
20	a) Br	1
21	भे रेलू को मीन जो की से दुर्बल ऑक्सीकारक क्रांग ऑक्सीकर्ण में खु:	

	कार्जी पर्ताण युक्त कार्जी क्सिलिक अम्ल (अल्बेगिक अम्ल) देता है, यह सिद्ध करता है कि, अल्बेगिस में साल्डिहाइउ समूह उपस्थित है СНО СООН (СНОН), ७, (СНОН), СН,ОН)
	(b) वल्कोस के रेसी टिक रेन हाइ इाइड हीरा रेसी टिलन के वलकोस पेन्टा रेसी टैट बनता ट्रें जो वल्कोस में पाँच - जा क्षेत्रहों की पुष्टि	1
	CHO O CHO O CHOH), VAIL AND THE SERVICE O-C-CH, CH,OH CH,-O-C-CH, 2003 J.	
22	$\Delta T_{\rm f} = K_{\rm f} \text{ m}$ $m = \Delta T_{\rm f} / K_{\rm f}$ $m = 0.3/1.86$ $= 0.16 \text{m}$	1/2 1/2
	$m = \frac{x_2 \times 1000}{M_A}$ $x_2 = \frac{0.16 \times 18}{1000} = 2.88 \times 10^{-3}$ $\frac{p_1^0 - p_1}{p_1^0} = x_2$	1/2
	$\frac{24.8 - p_1}{24.8} = 2.88 \times 10^{-3}$ $p_1^0 - p_1 = x_2 p_1^0$	½ ½
	= 2.88 X 10 ⁻³ × 24.8 mm Hg = 0.07 mm Hg	1/2

23	·	
25	a) = k [A] ^p [B] ^q	
	5.0×10^{-3} = k [0.01] ^p [0.01] ^q Eq 1	
	1.0×10^{-2} = k [0.02] ^p [0.01] ^q Eq 2	
	5.0×10^{-3} = k [0.01] ^p [0.02] ^q Eq 3	
	1 ~19141294 (eq1) 3/12(eq3)	
, and the second	1	
	q=0 (en1) a falen2)	1
G.	11 4737. UZ (eq1) 377 (eq2)	
	$(2)^{1} = (2)^{p}$ $p = 1$	1
	A $\Rightarrow y = 1$ B $\Rightarrow $	
	$5.0 \times 10^{-3} = k [0.01]^{1} [0.01]^{0}$	1/2
24	k = 0.5 min ⁻¹	1/2
	(a) Na OH बनने के कावण / OH अगमन बनने के	,
	01/101 2 2C A	•
	के क्यों कि समग्र सेल अमिक्रिया में कोई भी रोस। आया नहीं है जिसकी सांदरा विल्पा	
	स्मा आया नहां हा जिसकी सीद्रता विलामा	1 1
	में होने के कारण, सेल की से पूर्ण कार्य अविद	, ,
ON	लिस अ दल सकाता हा !	
	(८) क्यां के लेडकरण करन पर प्रात इकाह	
	ए में बदल सकती है। (८) क्यों कि तनुकरण करने पर प्रति इकाई आमता में विस्ति धारा है जाने वाले आमनें की मेरका बाद जाती है।	
	की भरता वार जाती है।	
25	a) [FeF ₆] ³⁻ -sp ³ d ² [Fe(CN) ₆] ⁴⁻ - d ² sp ³	1/2+1/2
	b) [FeF6]3- 01 F21 25 Hay Hay	1/2+1/2
4 I P		

	c)	[Fe(CN) ₆] ⁴ - 31/1/45 41274 +10 [FeF ₆] ³ - 31-31-49)4 [Fe(CN) ₆] ⁴ - 41-31-314	god .	1/2+1/2
25	(a)	यह रंगहीत ही जाता है फीका पड़ जाता है।	े रंग धीरे धीरे	1
		$t_{2g}^{3} eg^{2}$		
	(0)	sp3, प्रतिचुम्बकीय		1 + 1
26.		S _N 1	Sn ²	1+1
	1	य का रिवक	1803-11Van	,
	2	अह प्रथम कोरिका अनुसरण करती है।	यह द्वितीय क्रांग्टे	
	3	विन्यास का धारण	विन्यास् का प्रतिलीभन	
	4.	रें सिनीकरण है। जाता है	प्रिक्ति नहीं होता	
	5.	में द्वारा होता है	मंक्रापण अवस्था बनने के जाध्यम से होता है।	

<u></u>		
	6. धुवीम प्रोटिक विलायक धुवीम अप्रोटिक में होता है। विलामक में होता है। 7. वेग नामिकरामी की वेग नामिकरामी की	
	मंद्रता से स्वतंत्र है संद्रता पर निर्मर् है (कोई दा)	
	(_)-CH2-Cl ब्रान्जिल कार्बी धारायम के १ स्थामित के कारण	1+1
27	A= CH ₃ CH=CHCN / 2 2 - 2 - 51 - 13 2 3 4 1	1 1
28	a) NH ₂ NH ₃ NH ₄ NSO ₄ NH ₂ 453-473 K SO ₃ H	1 X3
	NH, NC + CHCl ₃ + 3KOH $\xrightarrow{31511}$ + 3KCl + 3H ₂ O	
	O NH ₂ H-N-C-CH ₃ (CH ₃ CO) ₂ O (QAS) ₁	
	₹a0's ~~	
29		

1 2, 4, 6- 215 MINIMINIM OUTH 1 ii) / २,4,6- हाइनाइ हा फीर्नाल / b) (i) $R = \overset{+}{O} - H + \overset{+}{C} - \longrightarrow R = \overset{+}{O} - \overset{+}{C} - \longrightarrow R - O - \overset{+}{C} - + H^{+}$ (b) पो) इके संकारण के कारण द्योरी आव-वा लावाई होती है / अनुनाद के कारण ८-०म आवया का आंगिक द्विआवंध लेशा होता है। (C) 2-मिश्रियोपनं -2-31ल तुरत युप्पलापन देता है जबकि क्यूरेन-1-आँल अगिक्रिया नहीं भरता 1 a) (i) वंध जो दी रेमीरो अम्लों की -cont-30 वंध द्वारा जीउता है (i) जब प्राकृत प्रोटीन में भीतिक परिवर्तन करते हैं. होसे - ताप में परिवर्तन छायवा रासायिक परिवर्तन कारते हैं जैसे, ph में परिवर्तन हो यह आपनी अविक साक्रेयम की खी देता है। ७ जियर आमा बनने के भारण जी अम्ली और क्षारकों के नें दे अनि क्रिया कर लेता है / का बी किसालक सम्बद्ध और क्रेमीनो समूह दोने की उपस्थित के कारण

	(८)। रे बोदार प्रोटीन : स्मानांतर पालिपेट्टाइड	
	अंखला संख्या / अल में अविलेय	
	गोलिकाकार प्रोटीन: जीलाकात पंग्लीपेखाइट	1
	श्री श्री संस्था / जल में किया (कोई राष्ट्र अंतर)	
	C)(ii) a-हिलियम डोर- 3- प्लिटिड	コナシ
	2003 : 3.	
31	(a) (i) 0.059 [Zn ²⁺]	1
	$E = (E^{o}_{c} - E^{o}_{a}) - \frac{0.059}{2} log \left[\frac{Zn^{2+}}{Pb^{2+}} \right]$	-
	$= [(-0.13) - (-0.76)] - \frac{0.059}{2} \log \frac{0.1}{0.02}$	1
	= 0.63 – 0.0295 log 5	
	=0.63-0.0295 X 0.699	
	= 0.63-0.02	
	=0.61४ (इकाई शलत अधवा न देने पर रे अंक	1
	कार है	
	(11) • विद्युत्वारा द्वारा वैद्युत अपव्ययन में रासामित्र	
	विवादन की मात्रा वेद्युतक्षप्रवाद्य में	
	प्वाहित विद्युत व्यारा की मात्रा के समानूपाती	
		/
	होती है।	,
		1
	•5F	/
	. 31 2(1)	1
31	(b) (i)	
	k= G*/R	1/2
	$G^* = k \times R = 0.125 \times 10^{-3} \times 1000$	1
	=0.125 cm ⁻¹	1/2
	(ii) $E_{Mg}^{2+}/Mg = E^0_{Mg}^{2+}/Mg - \frac{0.059}{2} log \frac{1}{[Mg^{2+}]}$	1 1/2
	$= 2.36 \text{ V} - \frac{0.059}{2} \log \frac{1}{10^{-4}}$	/2
	= 2.36 - 0.0295 X 4 log 10	1/2
	= 2.242 V	
	(11) यह लाप में वृद्धि के साध व्यटती हैं।	1
	महलाप म लाज क साथ व्या ह /	
L		

32	(a)(1)(1)को मेंट असने के कारण / C204 अग्म	1
	अवस्था के पूर्ण भरित d- कद्मक के कारण	1
	(111) क्यों कि Mm² 3 वर्गिस के कारण आधिक स्यापी है जनकि (3²+ 29 विन्यास के कारण अधिक स्यापी है।	1
((I) यह पर्योगित हो परिवर्तित हो अग्राता है / Mn 0म अग्राता है /	1
	$3MnO_4^{2-} + 4H^* \rightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$	
	(11) पेरिशियम में गरेट / K2 MnO4 वनता है]
	$2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$	
22	3124)	
32.	(b)(i) • लेंबना यह की मिश्रात / लेंब्रेनांयड की आया और लेंबुमान 5, c, ca और Al	1
	के साध मित्रात • बंद्र की गोली / अवच या खोल/हलके पिलंट के उत्पादन के लिए	1
	(ii) ८००में / ८०२०में (iii) वेने उप्रम की परिवर्तनीय ऑक्सीकरण का वस्था / वहद पुष्टतल में हा / संकुल निर्माण	1
	(1) क्यों कि इनके परमाणुकों में बड़ी सेरबा में अयुगालि	
	इलेक्ट्रान होते हैं, इसलिए इनमें प्रवल अंत्रापर	मामप्रवेक
	अन्योन्य क्रिया होती है अतः परमाणुकों के मध्य	

. j. At 1
1
1
1
1
) A)
)
1
1
1

R-COONa NaOH & CaO
R-H + Na₂CO₃