

Series: WYXZ5

SET ~ 3

प्रश्न-पत्र कोड Q.P. Code 56/5/3

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें। Candidates must write the Q.P. Code

on the title page of the answer-book.

(I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ **23** हैं।

Please check that this question paper contains 23 printed pages.

(II) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।

Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

(III) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 33 प्रश्न हैं।
Please check that this question paper contains 33 questions.

(IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथा स्थान पर प्रश्न का क्रमांक अवश्य लिखें।

Please write down the Serial Number of the question in the answer-book at the given place before attempting it.

(V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।

15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे

अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

56/5/3 <u>1</u> P.T.O.

सामान्य निर्देश :

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में **33** प्रश्न है। **सभी** प्रश्न **अनिवार्य** हैं।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **खण्ड क, ख, ग, घ,** एवं ङ।
- (iii) खण्ड क प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) **खण्ड ख** प्रश्न संख्या **17** से **21** तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न **2** अंकों का है।
- (v) **खण्ड ग** प्रश्न संख्या **22** से **28** तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न **3** अंकों का है।
- (vi) खण्ड \mathbf{u} प्रश्न संख्या $\mathbf{29}$ तथा $\mathbf{30}$ केस-आधारित प्रश्न हैं। प्रत्येक प्रश्न $\mathbf{4}$ अंकों का है।
- (vii) खण्ड ङ प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड क के अतिरिक्त अन्य सभी खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग **वर्जित** है।

खण्ड क

प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के 1 अंक के प्रश्न हैं।

 $16 \times 1 = 16$

- 1. CH_3CH_2CHO और CH_3CH_2COOH के मध्य किसके द्वारा विभेद किया जा सकता है ?
 - (A) सोडियम बाइकार्बोनेट परीक्षण
 - (B) हिन्सबर्ग परीक्षण
 - (C) आयोडोफॉर्म परीक्षण
 - (D) ल्यूकास परीक्षण
- 2. रसायन प्रयोगशाला में गुणात्मक विश्लेषण करते समय अभिषेक ने एक परखनली में पीले रंग का पोटैशियम क्रोमेट विलयन डाला। वह यह देखकर अचिम्भत हो गया कि विलयन का रंग तुरंत नारंगी रंग में बदल गया। उसे यह अनुभूति हुई कि परखनली साफ नहीं थी अपितु उसमें किसी अन्य द्रव की कुछ बूँदें थीं। निम्नलिखित पदार्थों में से परखनली में पोटैशियम क्रोमेट विलयन डालने से पहले कौन-सा सर्वाधिक संभावित द्रव उपस्थित था?
 - (A) सोडियम हाइड्रोजन कार्बोनेट विलयन
 - (B) मेथिल ऑरेंज विलयन
 - (C) सोडियम हाइड्रॉक्साइड विलयन
 - (D) HCl विलयन

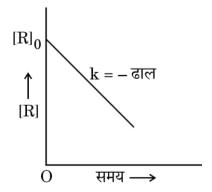
General Instructions:

Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into **five** sections **Section A**, **B**, **C**, **D** and **E**.
- (iii) **Section A** questions number **1** to **16** are multiple choice type questions. Each question carries **1** mark.
- (iv) **Section B** questions number **17** to **21** are very short answer type questions. Each question carries **2** marks.
- (v) **Section C** questions number **22** to **28** are short answer type questions. Each question carries **3** marks.
- (vi) **Section D** questions number **29** and **30** are case-based questions. Each question carries **4** marks.
- (vii) **Section E** questions number **31** to **33** are long answer type questions. Each question carries **5** marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the sections except Section A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculator is **not** allowed.

SECTION A

Questions no. 1 to 16 are Multiple Choice type Questions, carrying 1 mark each. $16 \times 1=16$


- **1.** CH₃CH₂CHO and CH₃CH₂COOH can be distinguished by :
 - (A) Sodium bicarbonate test
 - (B) Hinsberg test
 - (C) Iodoform test
 - (D) Lucas test
- 2. While doing qualitative analysis in chemistry lab, Abhishek added yellow coloured potassium chromate solution into a test tube. He was surprised to see the colour of the solution changing immediately to orange. He realised that the test tube was not clean and contained a few drops of some liquid. Which of the following substances will be the most likely liquid to be present in the test tube before adding potassium chromate solution?
 - (A) Sodium hydrogen carbonate solution
 - (B) Methyl orange solution
 - (C) Sodium hydroxide solution
 - (D) HCl solution

- **3.** उत्प्रेरक परिवर्तित करते हैं :
 - (A) साम्यावस्था स्थिरांक
 - (B) अभिक्रिया की एन्थैल्पी
 - (C) अभिक्रिया की गिब्ज़ ऊर्जा
 - (D) अभिक्रिया की सक्रियण ऊर्जा
- 4. निम्नलिखित अणुओं में से किसकी प्रकृति किरेल है ?
 - (A) 1-क्लोरोप्रोपेन

(B) 2-क्लोरोप्रोपेन

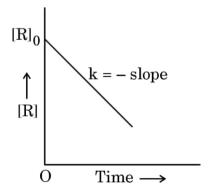
(C) 1-क्लोरोब्यूटेन

- (D) 2-क्लोरोब्यूटेन
- ${
 m CH_3CH_2OH}$ को ${
 m CH_3CHO}$ में परिवर्तित किया जा सकता है :
 - (A) उत्प्रेरकीय हाइड्रोजनन द्वारा
 - (B) LiAlH₄ के साथ अभिक्रियित करके
 - (C) PCC के साथ अभिक्रियित करके
 - (D) KMnO₄ के साथ अभिक्रियित करके
- 6. $CH_3 CH_2 N(CH_3) CH_2 CH_2 CH_3$ का IUPAC नाम है :
 - (A) N-मेथिलपेन्टेन-2-ऐमीन
 - (B) N-एथिल-N-मेथिलप्रोपेन-1-ऐमीन
 - (C) N,N-डाइएथिलप्रोपेन-1-ऐमीन
 - (D) N,N-डाइमेथिलप्रोपेन-1-ऐमीन
- 7. अभिकारक की सांद्रता [R] और समय 't' के मध्य आलेख नीचे दर्शाया गया है। यह आलेख दी गई अभिक्रिया की कोटि में से किसको इंगित करता है ?

(A) तृतीय कोटि

(B) द्वितीय कोटि

(C) प्रथम कोटि


(D) शुन्य कोटि

- **3.** The role of a catalyst is to change :
 - (A) equilibrium constant
 - (B) enthalpy of reaction
 - (C) Gibbs energy of reaction
 - (D) activation energy of reaction
- **4.** Which of the following molecules is chiral in nature?
 - (A) 1-chloropropane

(B) 2-chloropropane

(C) 1-chlorobutane

- (D) 2-chlorobutane
- **5.** CH_3CH_2OH can be converted to CH_3CHO by :
 - (A) catalytic hydrogenation
 - (B) treatment with LiAlH₄
 - (C) treatment with PCC
 - (D) treatment with KMnO₄
- **6.** The IUPAC name for $CH_3 CH_2 N(CH_3) CH_2 CH_2 CH_3$ is :
 - (A) N-methylpentan-2-amine
 - (B) N-ethyl-N-methylpropan-1-amine
 - (C) N,N-diethylpropan-1-amine
 - (D) N,N-dimethylpropan-1-amine
- 7. A plot between concentration of reactant [R] and time 't' is shown below. Which of the given order of reaction is indicated by the graph?

(A) Third order

(B) Second order

(C) First order

(D) Zero order

_	_	`	1 1 - 0	<u></u>	`	\sim	1 1 2
8.	गिथल	बामादद	गल्काहाली	सिल्वर नाइट्राइट	क माथ	आभोकया	करके देता है :
U•	71-1/1	\mathcal{A}	76 30 60 70	1/1/ 1/ 1152150	-17 (11-1	•11.11/1/11	11/11/9/II ().

- (A) एथिल नाइट्राइट
- (B) नाइट्रोएथेन
- (C) नाइट्रोमेथेन
- (D) एथीन

9. निम्नलिखित जलीय विलयनों में से किसका हिमांक उच्चतम होगा ?

- (A) 1.0 M KCl
- $(B) \qquad 1 \cdot 0 \ M \ Na_2SO_4$
- (C) 1.0 M ग्लूकोस
- (D) 1.0 M AlCl_3

10. निम्नलिखित में से कौन-सा ऐल्डिहाइड कैनिज़ारो अभिक्रिया देगा ?

- $\begin{array}{cc} \text{(A)} & \text{CH}_3 \text{CH} \text{CHO} \\ & | \\ & \text{CH}_3 \end{array}$
- (B) $(CH_3)_3C$ CHO
- (C) $CH_3 CH_2 CHO$
- $\begin{array}{ccc} \text{(D)} & \text{CH}_3 \text{CH} \text{CH} \text{CHO} \\ & | & | \\ & \text{CH}_3 & \text{CH}_3 \end{array}$

11. निम्नलिखित समूहों में से किसके दोनों आयन जलीय विलयन में रंगीन हैं ?

- I. Cu⁺ II.
- II. Ti^{4+} III. Co^{2+}
- IV. Fe^{2+}

[परमाणु क्रमांक : Cu = 29, Ti = 22, Co = 27, Fe = 26]

(A) I और II

(B) II और III

(C) III और IV

(D) I और IV

8.	The treatment	of ethyl k	romide with	alcoholic silve	r nitrite gives ·
0.	The deadness	OI CHINI Y	orominae with	aicononic sirve	i munine gives .

- (A) ethyl nitrite
- (B) nitroethane
- (C) nitromethane
- (D) ethene

9. Which of the following aqueous solutions will have the highest freezing point?

- (A) 1.0 M KCl
- (B) $1.0 \text{ M Na}_2\text{SO}_4$
- (C) 1.0 M Glucose
- (D) 1.0 M AlCl₃

10. Which of the following aldehydes will undergo Cannizzaro reaction?

- $\begin{array}{cc} \text{(A)} & \text{CH}_3 \text{CH} \text{CHO} \\ & | \\ & \text{CH}_3 \end{array}$
- (B) $(CH_3)_3C$ CHO
- (C) $CH_3 CH_2 CHO$
- $\begin{array}{ccc} \text{(D)} & \text{CH}_3 \text{CH} \text{CH} \text{CHO} \\ & | & | \\ & \text{CH}_3 & \text{CH}_3 \end{array}$

11. In which of the following groups are both ions coloured in aqueous solution?

- I. Cu⁺
- II. Ti⁴⁺
- III. Co^{2+}
- IV. Fe^{2+}

[Atomic number : Cu = 29, Ti = 22, Co = 27, Fe = 26]

(A) I and II

(B) II and III

(C) III and IV

(D) I and IV

12. स्तंभ I में दिए गए सेल के प्रकार को स्तंभ II में दिए गए उनके उपयोग से मिलान कीजिए :

	स्तंभ I		स्तंभ II
i.	लेड संचायक सेल	a.	दीवार घड़ी
ii.	मर्क्यूरी सेल	b.	अपोलो अंतरिक्ष कार्यक्रम
iii.	शुष्क सेल	c.	कलाई घड़ी
iv.	ईंधन सेल	d.	इनवर्टर

(A) i-a, ii-b, iii-c, iv-d

(B) i-d, ii-c, iii-a, iv-b

(C) i-c, ii-d, iii-b, iv-a

(D) i-b, ii-a, iii-d, iv-c

प्रश्न संख्या 13 से 16 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए।

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या **नहीं** करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (D) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।
- 13. अभिकथन (A) : जैसे-जैसे ऐल्किल समूह का आकार बढ़ता है, ऐल्डिहाइडों और कीटोनों की जल में घुलनशीलता घटती जाती है।
 - कारण (R): ऐल्डिहाइडों और कीटोनों में द्विध्रुव-द्विध्रुव अन्योन्यक्रियाएँ होती हैं।
- 14. अभिकथन (A): ऐत्किल हैलाइडों के क्वथनांकों के घटने का क्रम RI > RBr > RCl > RF है। antimetric and <math>RI > RBr > RCl > RF है।
- **15.** अभिकथन (A): आयनिक विलयन के प्रतिरोध को मापने के लिए AC स्रोत का उपयोग किया जाता है।
 - कारण (R): यदि DC स्रोत का उपयोग किया जाता है तो आयिनक विलयन की सांद्रता बदल जाएगी।
- **16.** अभिकथन (A) : ताप में वृद्धि के साथ हेनरी नियम स्थिरांक (K_H) घटता है। कारण (R) : जैसे-जैसे ताप बढ़ता है, द्रवों में गैसों की विलेयता घटती है।

12. Match the type of cell given in Column I with their use given in Column II.

	Column I		Column II
i.	Lead storage cell	a.	Wall clock
ii.	Mercury cell	b.	Apollo Space Programme
iii.	Dry cell	c.	Wrist watch
iv.	Fuel cell	d.	Inverter

(A) i-a, ii-b, iii-c, iv-d

(B) i-d, ii-c, iii-a, iv-b

(C) i-c, ii-d, iii-b, iv-a

(D) i-b, ii-a, iii-d, iv-c

For Questions number 13 to 16, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- **13.** Assertion (A): The solubility of aldehydes and ketones in water decreases with increase in size of the alkyl group.
 - *Reason (R)*: Aldehydes and ketones have dipole-dipole interaction.
- **14.** Assertion (A): The boiling points of alkyl halides decrease in the order RI > RBr > RCl > RF.
 - Reason(R): The van der Waals forces of attraction decrease in the order RI > RBr > RCl > RF.
- **15.** Assertion (A): For measuring resistance of an ionic solution an AC source is used.
 - Reason (R): Concentration of ionic solution will change if DC source is used.
- **16.** Assertion (A): Henry's law constant (K_H) decreases with increase in temperature.
 - Reason (R): As the temperature increases, solubility of gases in liquids decreases.

खण्ड ख

17. (क) $CaCl_2$ (मोलर द्रव्यमान = $111~g~mol^{-1}$) के 3~g को 260~g जल में घोलने पर बनने वाले विलयन के क्वथनांक का उन्नयन, यह मानते हुए कि $CaCl_2$ पूर्णतया वियोजित हो गया है, परिकलित कीजिए। (जल के लिए $K_b=0.52~K~kg~mol^{-1}$)

2

अथवा

(ख) 'X' और 'Y' द्रव आदर्श विलयन बनाते हैं। शुद्ध 'X' और शुद्ध 'Y' के वाष्प दाब क्रमश: 120 mm Hg और 160 mm Hg हैं। 'X' और 'Y' के समान मोलों को मिलाकर बनने वाले विलयन का वाष्प दाब परिकलित कीजिए।

2

18.

mol/L में KCl विलयन की सांद्रता	S cm ⁻¹ में 298·15 K पर चालकता	S cm ² mol ⁻¹ में 298·15 K पर मोलर चालकता
1.000	0.1113	111:3
0.100	0.0129	129.0
0.010	0.00141	141.0

ऊपर दिए गए आँकड़ों के आधार पर, सांद्रता के साथ चालकता और मोलर चालकता में परिवर्तन के लिए संभावित कारण दीजिए।

2

19. (क) अभिक्रिया की कोटि और आण्विकता के मध्य कोई दो अंतर दीजिए।

1

(ख) अभिक्रिया X + Y → Z, जिसमें X और Y दोनों प्रथम कोटि बलगतिकी का अनुसरण करते हैं; यदि X की सांद्रता दुगुनी और Y की सांद्रता तीन गुनी कर दी जाए, तो अभिक्रिया वेग पर क्या प्रभाव पडेगा ?

1

20. $443~{
m K}$ पर सांद्र ${
m H}_{2}{
m SO}_{4}$ के साथ ऐथिल ऐल्कोहॉल के निर्जलन की क्रियाविधि लिखिए।

2

21. (क) फ़ीनॉल की तुलना में कार्बोक्सिलिक अम्ल अधिक अम्लीय होता है। कारण दीजिए।

1

(ख) बेन्ज़ैल्डिहाइड और ऐसीटोफ़ीनोन में विभेद करने के लिए एक रासायनिक परीक्षण दीजिए।

1

SECTION B

17. (a) Calculate the elevation of boiling point of a solution when 3 g of $CaCl_2$ (Molar mass = 111 g mol⁻¹) was dissolved in 260 g of water, assuming that $CaCl_2$ undergoes complete dissociation. (K_b for water = 0.52 K kg mol⁻¹)

2

OR

(b) Liquids 'X' and 'Y' form an ideal solution. The vapour pressure of pure 'X' and pure 'Y' are 120 mm Hg and 160 mm Hg respectively. Calculate the vapour pressure of the solution containing equal moles of 'X' and 'Y'.

2

18.	Concentration of KCl solution in mol/L	Conductivity at 298·15 K in S cm ⁻¹	Molar Conductivity at 298·15 K in S cm ² mol ⁻¹
	1.000	0.1113	111:3
	0.100	0.0129	129.0
	0.010	0.00141	141.0

Based on the data given above, give plausible reason for the variation of conductivity and molar conductivity with concentration.

2

19. (a) Give any two differences between order and molecularity of a reaction.

1

(b) For a reaction $X + Y \rightarrow Z$, in which both X and Y follow first order kinetics; if the concentration of X is increased 2 times and concentration of Y is increased 3 times, how does it affect the rate of reaction?

1

20. Write the mechanism of dehydration of ethyl alcohol with conc. H_2SO_4 at 443 K.

2

21. (a) Carboxylic acid is more acidic than phenol. Give reason.

1

(b) Give a chemical test to distinguish between benzaldehyde and acetophenone.

1

P.T.O.

खण्ड ग

- **22.** (क) श्वेता ने दो द्रवों A और B के प्रत्येक के 10~mL को परस्पर मिलाया। मिलाने पर विलयन का आयतन $20\cdot 2~mL$ पाया गया।
 - (i) द्रवों को मिलाने पर आयतन में परिवर्तन क्यों हुआ ?

1

(ii) मिलाने पर ताप बढेगा या घटेगा ?

1

(iii) इस प्रकार के विलयन का एक उदाहरण दीजिए।

1

अथवा

(ख) (i) पहाड़ी इलाकों में बर्फ से ढकी सड़कों को साफ करने में नमक छिड़कने से किस तरह मदद मिलती है ?

1

(ii) क्या होता है जब लाल रुधिर कोशिकाओं को 0.5% (द्रव्यमान/आयतन) सोडियम क्लोराइड विलयन में रखा जाता है ? अपने उत्तर का औचित्य दीजिए।

1

(iii) प्रतिलोम परासरण का एक अनुप्रयोग लिखिए।

1

23. अभिक्रिया $A + B \rightarrow 3$ त्पाद के लिए, अभिकारकों की विभिन्न प्रारंभिक सांद्रताओं के लिए निम्नलिखित प्रारंभिक वेग प्राप्त हुए :

क्रमांक	$[A]/mol\ L^{-1}$	$[B]/mol\ L^{-1}$	प्रारंभिक वेग / $mol\ L^{-1}\ s^{-1}$
1	0.1	0.1	0.05
2	0.2	0.1	0.10
3	0.1	0.2	0.05

A और B के सापेक्ष अभिक्रिया की कोटि और अभिक्रिया की समग्र कोटि ज्ञात कीजिए।

3

SECTION C

- 22. (a) Shweta mixed two liquids A and B of 10 mL each. After mixing, the volume of the solution was found to be 20·2 mL.
 - (i) Why was there a volume change after mixing the liquids?
 - (ii) Will there be an increase or decrease of temperature after mixing?
 - (iii) Give one example for this type of solution.

OR

- (b) (i) How does sprinkling of salt help in clearing the snow covered roads in hilly areas?
 - (ii) What happens when red blood cells are kept in 0.5% (mass/vol) NaCl solution? Justify your answer.
 - (iii) Write an application of reverse osmosis.
- **23.** For the reaction $A + B \rightarrow Products$, the following initial rates were obtained at various initial concentrations of reactants:

Sl. No.	$[A]/mol\ L^{-1}$	$[B]/mol\ L^{-1}$	Initial rate/mol L^{-1} s ⁻¹
1	0.1	0.1	0.05
2	0.2	0.1	0.10
3	0.1	0.2	0.05

Determine the order of the reaction with respect to A and B and overall order of the reaction.

3

1

1

1

1

1

1

24.	(ক)	षट्दंतुर लिगन्ड का नाम और संरचना दीजिए।	1
	(ख)	$[{ m Ni(CN)}_4]^{2-}$ वर्ग समतलीय है जबिक $[{ m Ni(CO)}_4]$ चतुष्फलकीय है। क्यों $?$ [परमाणु क्रमांक : ${ m Ni}=28$]	2
		[परमाणु क्रमाक : 111 = 20]	
25.	निम्नि	लेखित के लिए कारण दीजिए :	
	(ক)	नाभिकरागी प्रतिस्थापन अभिक्रियाओं के प्रति हैलोऐरीन कम अभिक्रियाशील होते हैं।	1
	(ख)	ऑर्थो और मेटा समावयवयों की तुलना में p -डाइक्लोरोबेन्ज़ीन का गलनांक उच्चतर होता है।	1
	(ग)	$\mathrm{S_{N}}2$ अभिक्रिया के प्रति तृतीयक ऐल्किल हैलाइड अल्पतम अभिक्रियाशील होते हैं।	1
26.	(क)	निम्नलिखित के लिए रासायनिक समीकरण लिखिए : (i) क्यूमीन से फ़ीनॉल का विरचन (ii) ऐनिसोल का नाइट्रोकरण	2
	(ख)	निम्नलिखित को पूर्ण कीजिए : $(\mathrm{CH_3})_3\ \mathrm{C} - \mathrm{O} - \mathrm{CH_3} + \mathrm{HI} \rightarrow$	1
27.	निम्नि	त्रखित अभिक्रियाओं में निर्मित उत्पाद लिखिए :	
	(ক)	$\mathrm{CH_{3}CHO} + \mathrm{NH_{2}CONHNH_{2}} \rightarrow$	1
	(ख)	$CH_3CHO \xrightarrow{\overline{\text{пNaOH}}}$	1
	(ग)	$\text{CH}_3\text{COOH} \xrightarrow{\text{Cl}_2/\text{लाल P}} \text{H}_2\text{O}$	1
28.	(ক)	रक्त के थक्का जमने के लिए उत्तरदायी विटामिन का नाम लिखिए।	1
	(ख)	प्रोटीन के विकृतीकरण से क्या अभिप्राय है ? एक उदाहरण दीजिए।	2

24. Write the name and structure of a hexadentate ligand. (a)

1

Why is $[Ni(CN)_4]^{2-}$ square planar while $[Ni(CO)_4]$ is tetrahedral? (b) [Atomic number : Ni = 28]

2

- Account for the following: **25.**
 - Haloarenes are less reactive towards nucleophilic substitution (a) reactions.

1

p-dichlorobenzene has higher melting point than ortho and meta (b) isomers.

1

1

Tertiary alkyl halides are least reactive towards S_N 2 reaction. (c)

2

Write the chemical equation for the following: 26. (a)

Preparation of phenol from cumene (i)

Nitration of anisole (ii)

1

(b) Complete the following:

 $(CH_3)_3 C - O - CH_3 + HI \rightarrow$

1

Write the products formed in the following reactions: **27.**

 $CH_3CHO + NH_2CONHNH_2 \rightarrow$

 $\mathrm{CH_{3}CHO} \xrightarrow{\quad \mathrm{dil.\ NaOH} \quad }$ (b)

1

 $\text{CH}_3\text{COOH} \xrightarrow{\begin{array}{c} \text{Cl}_2/\text{red}\,P \\ \text{H}_2\text{O} \end{array}}$ (c)

1

Name the vitamin which is responsible for coagulation of blood. 28. (a)

1

What is meant by denaturation of protein? Give an example. (b)

2

(a)

खण्ड घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं। केस को ध्यानपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए।

29. कार्बोहाइड्रेट पॉलिहाइड्रॉक्सी ऐल्डिहाइड अथवा कीटोन हैं जो बहुत अधिक संरचनात्मक विविधताओं को निरूपित करते हैं जिसका कारण है दिक्-स्थान में परमाणुओं की विभिन्न व्यवस्था, फलस्वरूप उनके सैकड़ों त्रिविम समावयवी बन जाते हैं। यद्यपि अधिकतर त्रिविम समावयवों के रासायनिक गुणधर्म ज्यादा भिन्न नहीं होते, लेकिन उनकी उपापचय की दर और जैविक प्रणालियों में उपयोग महत्त्वपूर्ण रूप से भिन्न होता है तथा वह कार्बोहाइड्रेटों के समग्र उपापचय को प्रभावित करता है। संरचनात्मक रूपभेद, जो त्रिविम आकाश में परमाणुओं की भिन्न व्यवस्था के कारण उत्पन्न होते हैं, त्रिविम समावयव कहलाते हैं। त्रिविम समावयवों की संख्या का अनुमान सैद्धांतिक रूप से 2n सूत्र का उपयोग करके लगाया जा सकता है जहाँ 'n' अणु में उपस्थित त्रिविम केन्द्र अथवा असममित (किरेल) कार्बन परमाणुओं की संख्या है। इन त्रिविम समावयवों में से कुछ संरचनाएँ, जो एक-दूसरे की दर्पण प्रतिबिंब होती हैं, प्रतिबिंब रूप (एनैन्टिओमर) कहलाती हैं।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

(क) ग्लूकोस में ऐल्डिहाइड समूह और ऋजु श्रृंखला की उपस्थिति दर्शाने के लिए रासायनिक अभिक्रियाएँ दीजिए।

2

1

1

1

(ख) (i) ऐनोमर को परिभाषित कीजिए।

अथवा

- (ख) (ii) β -D-ग्लूकोपाइरैनोस की संरचना बनाइए।
- (ग) सूक्रोस को अपवृत (प्रतीप) शर्करा कहा जाता है। समझाइए।
- 30. 1893 में वर्नर का उपसहसंयोजन सिद्धांत, उपसहसंयोजन संकुलों में आबंधों की व्याख्या करने के लिए पहला प्रयास था। यह स्मरणीय है कि 1897 में जे.जे. थॉमसन द्वारा इलेक्ट्रॉन की खोज तथा संयोजकता के इलेक्ट्रॉनिक सिद्धांत से पहले ही यह सिद्धांत प्रतिपादित किया गया था। वर्नर के पास कोई भी आधुनिक उपकरणी तकनीक नहीं थी और उसके सभी अध्ययन सामान्य प्रायोगिक तकनीकों द्वारा किए गए थे। वर्नर संकुलों में आबंधन की प्रकृति की व्याख्या करने में समर्थ हुआ और उसने निष्कर्ष निकाला कि संकुलों में धातु दो भिन्न प्रकार की संयोजकताएँ प्रदर्शित करती हैं: प्राथमिक और द्वितीयक। प्राथमिक संयोजकताएँ सामान्य रूप से आयननीय होती हैं जबिक द्वितीयक संयोजकताएँ अन-आयननीय होती हैं।

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

29. Carbohydrates are polyhydroxy aldehydes or ketones that represent enormous structural diversity in terms of the arrangement of atoms in space, resulting in hundreds of stereoisomers. Although the chemical properties of most stereoisomers may not be very different, their metabolic rate and utilization in biological systems is significantly different and known to influence the overall carbohydrate metabolism. Structural variants, which arise due to a different arrangement of atoms in three-dimensional space are known as stereoisomers. The number of stereoisomers can be theoretically estimated by using the formula 2n, where 'n' is the number of stereocenters or asymmetric (chiral) carbon atoms in a molecule. Out of these stereoisomers, there are some structures, which are mirror images of each other, and they are referred to as enantiomers.

Answer the following questions:

(a) Give chemical reactions to show the presence of an aldehydic group and straight chain in glucose.

2

1

1

1

(b) (i) Define anomers.

OR.

- (b) (ii) Draw the structure of β -D-Glucopyranose.
- (c) Sucrose is known as invert sugar. Explain.
- 30. Werner's coordination theory in 1893 was the first attempt to explain the bonding in coordination complexes. It must be remembered that this theory was put forward before the electron had been discovered by J.J. Thomson in 1897, and before the electronic theory of valency. Werner did not have any of the modern instrumental techniques and all his studies were made using simple experimental techniques. Werner was able to explain the nature of bonding in complexes and he concluded that in complexes, the metal shows two different sorts of valency: primary and secondary. Primary valences are normally ionisable whereas secondary valences are non ionisable.

56/5/3 # 17 # P.T.O.

	\sim	7. 1	00
नम्न	लाखत	। प्रश्ना क	उत्तर दीजिए :

(क) एक मोल ${\rm CrCl_3\cdot 4H_2O}$, ${\rm AgNO_3}$ विलयन के आधिक्य के साथ अभिक्रियित किए जाने पर एक मोल ${\rm AgCl}$ अवक्षेपित करता है। (i) संकुल का संरचनात्मक सूत्र और (ii) ${\rm Cr}$ की द्वितीयक संयोजकता लिखिए।

2

(ख) द्वि-लवण और संकुल में क्या अंतर है ?

1

(ग) (i) निम्नलिखित संकुलों को उनके विलयन में चालकता के बढ़ते हुए क्रम में व्यवस्थित कीजिए : $[Cr(NH_3)_3Cl_3],\quad [Cr(NH_3)_6]Cl_3,\quad [Cr(NH_3)_5Cl]Cl_2$

1

अथवा

(ग) (ii) उपसहसंयोजन यौगिकों की प्राथमिक और द्वितीयक संयोजकताओं के बीच दो अंतर लिखिए।

1

खण्ड ङ

- 31. (क) (i) जब पायरोलुसाइट अयस्क को वायु की उपस्थिति में KOH के साथ संगलित किया जाता है तो गाढ़े हरे रंग का उत्पाद 'A' प्राप्त होता है जो अम्लीय माध्यम में बैंगनी रंग के यौगिक 'B' में परिवर्तित हो जाता है।
 - (I) 'A' और 'B' के सूत्र लिखिए।
 - (II) यौगिक 'B' की अम्लीय माध्यम में Fe^{2+} के साथ अभिक्रिया का आयनिक समीकरण लिखिए।

2

(ii) कारण दीजिए:

3

- (I) जलीय विलयन में ${
 m Ce}^{4+}$ एक अच्छा ऑक्सीकारक है।
- (II) लैंथेनॉयड आकुंचन की तुलना में एक तत्त्व से दूसरे तत्त्व के बीच ऐक्टिनॉयड आकुंचन अधिक होता है।
- (III) $E_{Zn^{2+}/Zn}^{\circ}$ का मान अपेक्षा से अधिक ऋणात्मक है, जबिक $E_{Cu^{2+}/Cu}^{\circ}$ धनात्मक है।

अथवा

Answer the following questions:

- (a) One mole of CrCl₃. 4H₂O precipitates one mole of AgCl when treated with excess of AgNO₃ solution. Write (i) the structural formula of the complex, and (ii) the secondary valency of Cr.
- 2
- (b) What is the difference between a complex and a double salt?
- 1
- (c) (i) Arrange the following complexes in the increasing order of conductivity of their solution: [Cr(NH₃)₃Cl₃], [Cr(NH₃)₆]Cl₃, [Cr(NH₃)₅Cl]Cl₂

1

OR

(c) (ii) Write two differences between primary and secondary valences in coordination compounds.

1

SECTION E

- **31.** (a) (i) When pyrolusite ore is fused with KOH, in presence of air, a dark green coloured product 'A' is obtained which changes to purple coloured compound 'B' in acidic medium.
 - (I) Write the formulae of 'A' and 'B'.
 - (II) Write the ionic equation for the reaction when compound 'B' reacts with Fe²⁺ in acidic medium.

2

(ii) Give reasons:

3

- (I) Ce⁴⁺ in aqueous solution is a good oxidising agent.
- (II) The actinoid contraction is greater from element to element than lanthanoid contraction.
- (III) $E_{Zn^{2+}/Zn}^{\circ}$ value is more negative than expected, whereas $E_{Cu^{2+}/Cu}^{\circ}$ is positive.

OR

- आवर्ती गुणधर्मों का अध्ययन करते समय, आरती ने Hf के परमाणु आकार में एक (ख) (i) असामान्य व्यवहार देखा। उसने पाया कि यद्यपि Hf उसी समृह में Zr के ठीक नीचे है, फिर भी उनके परमाणु आकार लगभग समान हैं। ऊपर दिए गए व्यवहार के लिए कौन-सी परिघटना उत्तरदायी है ? उसकी (I)परिभाषा लिखिए। उपर्युक्त परिघटना के किसी अन्य परिणाम का उल्लेख कीजिए। (II)2 निम्नलिखित के लिए कारण दीजिए: (ii) 3 संक्रमण धातुएँ उत्प्रेरकीय गुणधर्म दर्शाती हैं। (I)संक्रमण धातुओं की कणन एन्थैल्पी उच्च होती है। (II)Sc एक संक्रमण तत्त्व है, जबकि Zn नहीं। (III)किसी गैल्वेनी सेल के लिए, निम्नलिखित अर्ध अभिक्रियाएँ दी गई हैं। निर्णय लीजिए (i) 32. (क) कि कौन-सी, अपचयन अभिक्रिया रहेगी और किसका प्रतिलोमन होकर ऑक्सीकरण अभिक्रिया होगी। अपने उत्तर के लिए कारण दीजिए। 2 $Cr^{3+} + 3e^{-} \rightarrow Cr(s); E^{\circ} = -0.74 V$ (I) $Fe^{2+} + 2e^{-} \rightarrow Fe(s); \ E^{\circ} = - \ 0.44 \ V$ (II)उस सेल को निरूपित कीजिए जिसमें निम्नलिखित अभिक्रिया होती है: (ii) 3 $Mg(s) + 2Ag^{+}(0.001 M) \rightarrow Mg^{2+}(0.100 M) + 2Ag(s)$ यदि $E_{Hm}^{0}=3\cdot17~V$ है, तो E_{Hm}^{0} का परिकलन कीजिए। $(\log\,10=1)$ अथवा कोलराउश नियम बताइए। इसके कोई दो अनुप्रयोग दीजिए। (i) 2 (ख) $\wedge_m^\circ \mathrm{NH_4Cl}, \ \wedge_m^\circ \mathrm{NaOH}$ और $\wedge_m^\circ \mathrm{NaCl}$ क्रमश: 129·8, 217·4 और (ii)
 - $108.9~{
 m S~cm^2~mol^{-1}}~{
 m \ddot{t}}~{
 m l}~{
 m l}~{
 m l}~{
 m m}^{1}$ स्वां पर ${
 m NH_4OH}~{
 m l}~{
 m l$

3

- (b) (i) While studying the periodic properties, Arti came across an abnormal behaviour in the atomic size of Hf. She found that, even though Hf is placed below Zr in the same group, both have almost similar atomic sizes.
 - (I) Which phenomenon is responsible for the above behaviour? Define it.
 - (II) Mention any other consequence of the above phenomenon.
 - (ii) Give reasons for the following:
 - (I) Transition metals exhibit catalytic properties.
 - (II) Transition metals have high enthalpy of atomisation.
 - (III) Sc is a transition element, while Zn is not.
- **32.** (a) (i) For a galvanic cell, the following half reactions are given. Decide, which will remain as reduction reaction and which will be reversed to become an oxidation reaction. Give reason for your answer.
 - (I) $Cr^{3+} + 3e^{-} \rightarrow Cr(s)$; $E^{\circ} = -0.74 \text{ V}$
 - (II) $Fe^{2+} + 2e^{-} \rightarrow Fe(s)$; $E^{\circ} = -0.44 \text{ V}$
 - (ii) Represent the cell in which the following reaction takes place:

 $Mg(s) + 2Ag^{+}(0.001 M) \rightarrow Mg^{2+}(0.100 M) + 2Ag(s)$

Calculate E_{cell} if $E_{cell}^{\circ} = 3.17 \text{ V.}$ (log 10 = 1)

OR

- (b) (i) State Kohlrausch's law. Give any two applications of it.
 - (ii) $\wedge_m^\circ NH_4Cl$, $\wedge_m^\circ NaOH$ and $\wedge_m^\circ NaCl$ are 129·8, 217·4, and 108·9 S cm² mol⁻¹ respectively. Molar conductivity of 1×10^{-2} M solution of NH_4OH is 9·33 S cm² mol⁻¹. Calculate the degree of dissociation (α) of NH_4OH solution at this concentration.

3

2

3

2

3

2

- **33.** (क) (i) रसायन विज्ञान की प्रायोगिक कक्षा में, शिक्षक ने अपने छात्रों को C_2H_7N आण्विक सूत्र वाला कोई ऐमीन 'X' दिया और छात्रों से कहा कि इस ऐमीन के प्रकार को पहचानिए। छात्रों में से एक छात्रा, नीता ने प्रेक्षित किया कि यह $C_6H_5SO_2Cl$ के साथ अभिक्रिया करके एक यौगिक देता है जो NaOH विलयन में घुल जाता है। क्या आप नीता की इस यौगिक 'X' को पहचानने में सहायता कर सकते हैं ?
 - (ii) निम्नलिखित को उनकी जलीय प्रावस्था में pK_b मान के बढ़ते हुए क्रम में व्यवस्थित कीजिए :

 ${\rm C_6H_5NH_2,\ (CH_3)_2NH,\ NH_3,\ CH_3NH_2,\ (CH_3)_3N}$

1

1

1

2

1

2

2

- (iii) ऐनिलीन नाइट्रोकरण द्वारा ऑर्थो और पैरा उत्पादों के साथ-साथ यथेष्ट मात्रा में मेटा उत्पाद भी देती है। क्यों ?
- (iv) ऐनिलीन का रूपान्तरण कीजिए:
 - (I) p-ब्रोमोऐनिलीन में
 - (II) फ़ीनॉल में

अथवा

- (ख) (i) अरुण ने एथिलऐमीन और CHCl₃ के मिश्रण को एथेनॉलिक KOH के साथ गर्म किया, जिससे एक दुर्गन्धयुक्त गैस बनी। सिम्मिलित रासायनिक समीकरण लिखिए।
 - (ii) निम्नलिखित अभिक्रियाओं में A और B को पहचानिए :

$$A \xrightarrow{H_2/Pd} \stackrel{NH_2}{\varprojlim} \stackrel{Br_2/NaOH}{\varprojlim} B$$

- (iii) ऐनिलीन का निम्नलिखित में रूपान्तरण कीजिए:
 - (I) बेन्ज़ीन
 - (II) सल्फैनिलिक अम्ल

33. (a) (i) In a chemistry practical class, the teacher gave his students an amine 'X' having molecular formula C_2H_7N , and asked the students to identify the type of amine. One of the students, Neeta, observed that it reacts with $C_6H_5SO_2Cl$, to give a compound which dissolves in NaOH solution. Can you help Neeta to identify the compound 'X'?

(ii) Arrange the following in the increasing order of their pK_b value in aqueous phase:

1

1

1

2

1

2

 $C_6H_5NH_2$, $(CH_3)_2NH$, NH_3 , CH_3NH_2 , $(CH_3)_3N$

- (iii) Aniline on nitration gives considerable amount of meta product along with ortho and para products. Why?
- (iv) Convert aniline to:
 - (I) p-bromoaniline
 - (II) phenol

OR

- (b) (i) Arun heated a mixture of ethylamine and CHCl₃ with ethanolic KOH, which forms a foul smelling gas. Write the chemical equation involved.
 - (ii) Identify A and B in the following reactions:

$$A \xrightarrow{\text{H}_2/\text{Pd}} \xrightarrow{\text{ethanol}} B^{\text{NH}_2}$$

- (iii) Convert aniline to:
 - (I) benzene
 - (II) sulphanilic acid

Marking Scheme Strictly Confidential

(For Internal and Restricted use only)
Senior School Certificate Examination, 2024-25
SUBJECT NAME CHEMISTRY (Theory) -043

(Q.P.CODE 56/5/3) MM: 70

General Instructions: -

You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.

"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."

Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.

The Marking scheme carries only suggested value points for the answers

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.

Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.

If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.

If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".

No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

A full scale of marks _____(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.

Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on an answer.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying/not same.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)

Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.

Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.

Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.

The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head

Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

MARKING SCHEME 2025 CHEMISTRY(Theory)-043

QP Code 56/5/3 MM: 70

Q.No	Value Points	Mark
	SECTION A	
1	(A)	1
2	(D)	1
3	(D)	1
4	(D)	1
5	(C)	1
6	(B)	1
7	(D)	1
8	(B)	1
9	(C)	1
10	(B)	1
11	(C)	1
12	(B)	1
13	(B)	1
14	(A)	1
15	(A)	1
16	(D)	1
	SECTION B	
17	$\Delta T_b = iK_b m$	
	$\Delta T_{\rm b} = \mathbf{i} \frac{K_{\rm b} \times 1000 \times w_2}{M_2 \times w_1}$	1/2
	i=3	1/
		1/2
	$\Delta T_b = 3 \times 0.52 \times 3 \times 1000$	1/2
	111 x 260	/2
	=0.162K	1/2
	OR	
17	Given $n_X = n_Y$	
	$\chi_X = \chi_Y = 0.5$	
	$P_{T} = p_{X}^{0} x_{x+} p_{Y}^{0} x_{Y} / p_{total} = x_{1} p_{1}^{0} + x_{2} p_{2}^{0}$	1/2
	$= 120 \times 0.5 + 160 \times 0.5$	
	=60 +80	1
	=140mm Hg	1/2
18	Conductivity decreases with decrease in concentration	1/2
	Due to decrease in number of current carrying ions per unit volume.	1/2
	Molar conductivity increases with decrease in concentration	1/2
	Due to decrease in inter-ionic attraction or increase in dissociation or increase in number of	1/2
	ions.	

19 (a) Order of a reaction	Molecularity
	·
1.Theoretical	al concept ½x2
· · · · · · · · · · · · · · · · · · ·	to elementary reactions
complex reactions. only.	,
	ther two correct differences)
(b) Rate = k[2X] [3Y]	teres two correct uniterences,
Rate of the reaction will increase by six times	1
20 Step 1: Formation of protonated alcohol.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	leohol
Step 2: Formation of carbocation: It is the slov rate determining step of the reaction.	west step and hence, the
$H - C - C - O - H \xrightarrow{\text{Slow}} H - C - C + H$	1 ₂ O
A A A A A	
Step 3: Formation of ethene by elimination of	
H - C = C + H $H + H$ $H + H$ $Ethene$	1
21 (a)In carboxylate ion, the negative charge is delocalized o	ver two electronegative 1
oxygen atoms, hence carboxylate ion is more stable than	_
equivalent resonating structures of carboxylate ion.	,
(b) (a)Add NaOH and iodine to both the compounds and	heat, acetophenone gives 1
yellow ppt of iodoform (CHI ₃),whereas Benzaldehyde doe	
	able chemical test)
SECTION C	able ellermear test)
22 (a)	
(i) The solution is non ideal, shows positive deviation from Rac weaker than A-A and B-B interactions	oult's law / A-B interactions are 1
(ii)Decrease in temperature	1
	y other suitable example) 1
OR	y other suitable example)
22 (b)	
(i)Salt lowers the freezing point of water and prevents formaticlean.	on of ice and hence its easy to 1
(ii)-Red blood cells swell up	1/2
-As the solution is hypotonic, water will flow into the cell/ As t	
endosmosis occurs.	The solution is hypotonic,
(iii) Desalination of sea water	1
23 Rate=k[A] ^x [B] ^y	
Eq.1 Rate ₁ = $k(0.1)^x(0.1)^y=5.0 \times 10^{-2}$	
Eq.2 Rate ₂ = $k(0.2)^x(0.1)^y=1.0 \times 10^{-1}$	
Eq.3 Rate ₃ = $k(0.1)^x(0.2)^y=5.0 \times 10^{-2}$	
$0.1 k \times 0.2^{x} \times 0.1^{y}$	
$\frac{1}{0.5} = \frac{1}{k \times 0.1^x \times 0.1^y}$	1
Hence $x=1$	
$\frac{0.05}{0.05} = \frac{k \times 0.1^{x} \times 0.2^{y}}{k \times 0.1^{x} \times 0.1^{y}}$	

	Hence y= 0	1
	Rate= $k[A]^1[B]^0$	-
	Overall order=1	1
24	(a)Ethylenediamine tetraacetate ion /EDTA ⁴⁻	1/2
	,coo-	
	H ₂ CNCOO-	
	H ₂ CN COO-	1/2
	C00-	
	(b)Oxidation state of Nickel is +2,CN being a strong ligand results in pairing of electrons	1
	, hybridization is dsp ² , hence geometry is Square planar	_
	whereas in Ni(CO) ₄ , oxidation sate of Nickel is 0(Zero), hybridization is sp ³ , hence	1
25	geometry is tetrahedral. (Or Diagrammatic explanation for both)	1
25	(a) Due to resonance in haloarene leading to partial double bond character of C-X bond /sp² hybridised carbon atom leading to shorter C-X bond length in haloarene /	1
	instability of phenyl carbocation/Electron-rich benzene ring repels nucleophile.	
	(b)Due to symmetry of p-dichlorobenzene it fits better in the crystal lattice.	1
	(c)Tertiary carbon atom is more sterically hindered for the attack of nucleophile.	1
26	(a)	
	(i)	
	ÇH ₃ ÇH ₃	
	CH ₃ -CH CH ₃ -C-O-O-H OH	
	O_2 H^+	1
	H ₂ O	
	(ii) OCH ₃ OCH ₃ OCH ₃	
	H_2SO_4 NO_2 $+$	
	HNO ₃	1
	(b)	
	CH ₃	
	CH_3 - C - O - CH_3 + HI \longrightarrow CH_3 OH + CH_3 - C - I	
	Γ CH_3 CH_3	1
27	(a)CH ₃ CH=NNHCONH ₂	1
2,	(b)CH ₃ CH(OH)CH ₂ CHO	1
	(C)CICH ₂ COOH	1
28	(a)Vitamin K	1
	(b)The loss in biological activity of native protein when it is subjected to physical or	1
	chemical change/Disruption in secondary and tertiary structures of protein when	
	subjected to physical or chemical change.	1
	Example: coagulation of egg on boiling. (or any other suitable example)	
	SECTION D	
29	(a) CHO	
	(CHOH), Br, water (CHOH),	4
	ĆH,OH	1
	CHO	
	(CHOH) ₄ — CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₃	1
	CH ₂ OH	

	(b)(i)Cyclic structures of glucose differ only in constitution of -OH group at C ₁ (b)(ii) (b)(ii) (c) (d) (d) (e) (e) (iii) (f) (iii) (iv) (iv)	- · · · · · · · · · · · · · · · · · · ·	1
	β – D – (+) – Glucopyranose		
	(c)Hydrolysis of dextrorotatory sucrose brings a optical rotation from dextro to laevo. The produ		1
30	(a) (i) [Cr(H ₂ O) ₄ Cl ₂]Cl (ii) 6 (b) Double salts dissociate into simple ions v	while complex compounds do not dissociate	1 1
	completely into ions when dissolved in water (c)		1
	(i) [Cr(NH ₃) ₃ Cl ₃] < [Cr(NH ₃) ₅ Cl]Cl ₂ < [Cr(NH ₃) ₆]Cl ₃ (c)(ii)	DR .	1
	Driman, Valency	Coopeday, Valorey	
	Primary Valency 1.lonisable	Secondary Valency 1. Non-ionisable	
	2.Satisfied by negative ions	Satisfied by negative ions or neutral molecules	1/2+1/2
		(or any other two suitable differences)	
	SECT	ION E	
31	(a)(i) (I) A - K_2MnO_4 B- $KMnO_4$ (II) $MnO_4^- + 5Fe^{2^+} + 8H^+$ \longrightarrow $Mn^{2^+} + 5Fe^{3^+}$		½ +½ 1
	(ii) (I) Gets reduced to +3 common oxidation state (II) Due to poorer shielding offered by 5f election (III) Due to completely filled d-subshell (d ¹⁰) atomization and low enthalpy of hydration.		1 1 1
	., .	DR	
31	(b)(i) (I) Lanthanoid contraction.		1/2
	The steady decrease in atomic and ionic radii in	lanthanoid series.	1/2
	(II) Decrease in basic character from left to right	t in lanthanoid series. (any other correct consequence)	1
	(ii) (I)They have the ability to exhibit variable of	xidation states/ tendency to form complex	1
	compounds/ large surface area. (II) Due to involvement of (n-1) d and ns electrons which results in strong metallic bond and strong interatomic bonding.		1
	3		1

	(III) Sc has incompletely filled d orbital (3d¹) in its ground state whereas Zn has completely filled	
	d orbital (3d ¹⁰) in ground state as well as in its oxidized state.	
32	(a)	
32		1/
	(i) (II) will remain as reduction reaction / (II)	1/2
	(I) will be reversed to become an oxidation reaction	1/2
	Due to low reduction potential of Cr	1
	(ii) Cell representation Mg(s)/Mg ²⁺ (aq,0.100M) Ag ⁺ (aq,0.001M)/Ag(s)	1
	n=2	
	$Ecell = E^{\circ}cell - \frac{2.303RT}{nF}log \frac{[Mg^{2+}]}{[Ag^{+}]^{2}}$	
		1/2
	$=3.17 - \frac{0.059}{2} \log \frac{0.100}{(0.001)^2}$	
		1
	$=3.17 - \frac{0.059}{2} \log 10^5$	
	$= 3.17 - 0.0295 \times 5$	
	= 3.17 - 0.1475	
	= 3.0225 V or 3.02 V	1/2
	OR	
32	(b)(i)Limiting molar conductivity of an electrolyte can be represented as the sum of the	1
	individual contributions of the anion and cation of the electrolyte.	
	To determine -1. Limiting molar conductivity of an electrolyte.	1/2
	2.Dissociation constant of a weak electrolyte	1/2
	(or any other two suitable applications)	/2
	(or any other two suitable applications)	
	(ii) Λ °mNH4OH = Λ °mNH4Cl + Λ °mNaOH — Λ °mNaCl	1/2
	= 129.8 + 217.4 - 108.9	
	=238.3 Scm ² mol ⁻¹	1
	$\alpha = \frac{\Lambda m^c}{\Lambda^{\circ} m}$ $= \frac{9.33}{238.3}$	1/2
	9.33	
	238.3	
	=0.039 /3.9%	1
33	(a)(i) Amine 'X' react with C ₆ H ₅ SO ₂ Cl to give a compound ,soluble in NaOH so amine 'X' is	1/2 +1/2
	primary amine, CH ₃ CH ₂ NH ₂ /Ethanamine/Ethyl amine	
	(ii) $(CH_3)_2NH < CH_3NH_2 < (CH_3)_3N < NH_3 < C_6H_5NH_2$	1
	(iii) In the strongly acidic medium, aniline is protonated to anilinium ion, which is meta-	1
	directing.	
	(iv)(I)	
	NH ₂ H-N-C-CH ₃ H-N-C-CH ₃ NII ₃	1
	$\frac{\text{ICH}_{3}\text{COI}_{3}\text{Q}}{\text{Pyridine}} \qquad \frac{\text{Br}_{2}}{\text{CH}_{3}\text{COOft}} \qquad \text{OH or H}^{2} \qquad \qquad \frac{2}{3}$	
	Br Br	
	$C_6H_5NH_2 + NaNO_2 + 2HCI \xrightarrow{(0-5^{\circ}C)} C_6H_5N_2^{+}CI^{-} \xrightarrow{H_2O, 283K} C_6H_5OH$	_
		1
	OR	
33	(b)(i)	
	Δ	
	CH ₃ CH ₂ NH ₂ + CHCl ₃ + 3KOH(EtOH)	1
		_
		<u> </u>

(ii)A = No2	1
$B = \bigcup_{C-NH_2}^{O}$	1
D - C-NH ₂	
(iii)	1
$C_6H_5NH_2 + NaNO_2 + 2HCI \xrightarrow{(0-5^{\circ}C)} C_6H_5N_2^{+}CI^{-} \xrightarrow{CH_3CH_2OH} C_6H_6$ (I)	
(II)	1
NH ₂ NH ₃ HSO ₄ NH ₂	_
$ \begin{array}{c} $	
SO ₃ H	

अंकन योजना 2025

रसायत विज्ञात (में द्वातक) MARKING SCHEME 2025 CHEMISTRY(Theory)-043 QP Code 56/5/3

MM: 70

Q.No	मूल बिंद	2/1
	2903 AT	1000
1	(A)	1
2	(D)	1
3	(D)	1
4	(D)	1
5	(C)	1
6	(B)	1
7	(D)	1
8	(B)	1
9	(C)	1
10	(B)	1
11	(C)	1
12	(B)	1
13	(B)	1
14	(A)	1
15	(A)	1
16	(D)	1
	्रवाउ र्व	1
17	$\Delta T_b = iK_b m$	
	$\Delta T_b = \mathbf{i} \frac{K_b \times 1000 \times w_2}{M_2 \times w_1}$	1/2
	i=3	1/2
	$\Delta T_b = 3 \times 0.52 \times 3 \times 1000$	
	111 x 260	1/2
	=0.162K	1,
	अथवा	1/2
17	Given $n_X = n_Y$	
	$\chi_X = \chi_y = 0.5$	
	$P_{T} = p_{X}^{0} x_{x+} p_{Y}^{0} x_{Y} / p_{\text{total}} = x_{1} p_{1}^{0} + x_{2} p_{2}^{0}$	1/2
	= 120 x 0.5 +160 x 0.5	
	=60 +80	1
	=140mm Hg	1/2
18	• सांद्रता घटने के साध जालकता घटती है। प्रति इकाई आगतन में विद्युत्ताकारा ले जाने वाले आमता की सरकाा घट जाती है। • सांद्रता घटने के साथ मो जर जालकता वंद जाती है। अंतरकायनिक अनक्षण में मनी के कारण अन्यवा	1
	प्रति इसाई आमतन में विद्यत्याम ले जाने वाले	
	आयों की सरका यह जाती है।	-
	• मारता वारते के भाष को या नामम तद जाते है।	
	عرام المراب على المراب	工
	अतरकायांगक उनाक्षण भ केमी के कारण उनेश्रवी	
	वियोजान में वर्ष अपवा आपनें की संद्रवा में वर्ष के मार	7
	C 147	1 4

			[
19	()		
	अगिक्रिया कोरि	अगण्येकता	
	1. प्रायोगिक नात्रा	1. सद्धातिक परिकल्पना	1/2×2
	2. प्राथितम् रवं जिटल दोनां अभिक्रियाओं पर	2. केवल प्राथितक अभिक्रियओं परल्य	2
		पवा मार अन्य सही अंतर)	
	() वेग = k[2X] [3Y] अर्गाम किया वेग में खु:	गूना वृद्धि होगी।	
20	न्यरण 1: प्रोट्सित केल्को	The day	
	l		
	h h	H -0-C-H	1 2
	यरण 2: भावी केटाया कावा	पार्यात्मित से स्माहाल पार्यात्मित आक्योतियम् आया,	1/2
	महस्वसं धीना न्यरण है।		1/2
	4- c - c - c - h = 4 - uzo 3: aizin & had	ANT H-C-C+ + H20	
			1
	H-C++	H C = C H +H,	
21 (का नावीं विस्ते 2 अग्या में	, ऋणावेश दो विद्युत्रऋणी	
	अगम्मीजित परमाणुद्धी	पर विस्थापित होता है,	

अतः फीनॉक्साइड आध्य की तुल्या में कार्बी क्सिलेट आया अविषक स्थापी होता है। वार्वे किस्टेट आया की दी मागा अनुनादी संरचाराकी का होनी भी जिसी में Na OH अरेट In Market गरम करते पर रेसीरोफीरोन आयडोफॉर्स (CMI3) मा पीला अवसेप दता है जलाम वेन्डे लिंड डाइड नहीं देवा। (अयग मोई अन्य उपयुक्तं रासायात्रकु परीक्रण)
- खण्डः म

(का)(i) विलयम अमाद्भी है, शउल्द नियम से द्यानाटमका 1
विचलन द्याता है / A - A और 8-8 अद्योन्याक्रायाआ की तुलना में A-B अन्याद्याक्रियाए दुर्वल हैं (ii) राप की कमी व विनाल और ऐसीटीन 4 (अथवा कोई अत्य अयुम्त उदाहरण) अथवा (क) पं) खेवण उत्त के हिमांक की बम कर देता है और बर्फ बन्ने में रोबता है इसलिए उसे माफ उत्तना आसान है। (पं) लाल राहार को क्षाकार फूल जाती है' 'क्योंकि विलयन अल्प परासरी हैं, इसलिए जल की क्षाका में अवाहत होगा / क्योंकि विलयन अल्प 1/2

	1 9 9 9 9 9	
	परासरी है, एण्डास्मासिस द्यंता है।	
	(iii) समुद्र जल का विलवणीकरण	
		1
22	9— LEAVEDIN	
23	(0.1) = k[A]*[B] ^y Eq. 1a ₃ ; = k(0.1)*(0.1) ^y =5.0 x 10 ⁻²	
,	Eq. $2\overline{37}_{1}$ = k(0.2) ^x (0.1) ^y =1.0 x 10 ⁻¹	
	Eq. 2 $\frac{1}{10.5}$ =	
	31. X=1	1
	$\frac{0.05}{0.05} = \frac{k \times 0.1^{x} \times 0.2^{y}}{k \times 0.1^{x} \times 0.1^{y}}$	
	ਤਿਜ਼ :_ y= 0 ਕਿਸਾ=k[Al ¹ [Bl ⁰ ਨ O	1
	का = k[A] [B] o o o	1
24	(म) अधिलीनडाइके मीन्टेट्रा समेटेट आया / EDTA 4-	1/2
	H ₂ C N COO	
	H ₂ C N COO-	5
	coo.	
	(क) निर्मेल की ऑक्सीकरण अवस्पा +2 है, CN रिष	
	प्रवास विगन्द होते के कारण उत्ते करोतों की युग्मा के	J'
	परिकाम स्वरूप संकरण वड् है, अतः ज्यामिति वर्गसमतलीय है जलकि [Ni(co)4] में निकेल की	
	वर्गसमतलीय है जलके [Ni (co)4] में निकेल की	
	(श्रम्य) है, संभरण sp3 है अतः ज्याति	1
	गहा व्यालनीय है	
	1, 2 - 1	
	(अथवा दोनों के लिस अगरेखीं व्याख्या)	
25	(क) क्लोरो बेन्जीन में अनुताद के कारण C- ८ आवंध में	
	आंशिक दिवंदा गुण उना जाते हैं लेकिन पाउ धर्में अमूना	<u> </u>
	नहीं है / क्लोरोबेन्जीन में भार्बन प्रमाण 562	q
	वनारावन्त्रात् म कावन प्रभाग डिक्	
	संभारत होता है लिसके कारण C- CI के मार्थ	
	आबंध जंबाई द्योरी है। ज्याती है जबकि भेषिल	1
	क्लोराइड में कार्कन परमाणु डक्ष संकारत है।	

	(रब) १- डाइक्लोरोबंजीन की समामित के कारण यह क्रिस्टल जालक में बेहतर फिट बेहत हैं। जा) द्तीयक कार्बन प्रमाण जामिकस्में के 311 क्रमण के प्रोप अधिक त्रिविमीय रेमप से बीब्ल होता हैं।	,
26	(i) (i) (H ₃ CH ₃ CH ₃ CH ₃ CH OH (H ₂ CO ₄ H ₂ SO ₄ H ₁ NO ₂ (ii) OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₄ OCH ₅	1
	$(\begin{tabular}{c} \cline{\cline{CH_3}} \$	1
27	(a)CH₃CH=NNHCONH₂ (b)CH₃CH(OH)CH₂CHO (f)CICH₂COOH	1 1 1,
28	(क) विद्यापिन K (ख) अब प्राकृत प्रोटीन में भौतिक अबवा रासाधितक परिवर्तन करते हैं ते प्रोटीन अवती जेविक स्मिक्राता की खेता है / जब प्रोटीन में भौतिक अबना रासाधितक परिवर्तन करते हैं तो मह इसके देरान द्वितीयक तथा तृतीयक संरचनाएं नहर हो जाती हैं। उदाहरण : उबालन पर अंडे की सफ़ेदी का स्कंदन (अधवा कोई अन्य अपित इदाहरण)	

	रवाउँ व्य	
29	(снон), соон (снон), снон), снон снон	1
	СНО (СНОН], ні, ∆, СН,-СН,-СН,-СН,-СН,	1
	(म्जा(i) बज्जूकोस की न्यक्रीय संरन्यनाओं में भिन्नता C, पर	-
	अपस्मित - 01 सम्रह के विन्यास में होती है /निविम समावयव औ c, और C2 पर - 011 समृह के	
	(विन्यास की अंतर रखते हैं) (वे)(ii) हैं।	,
	CH ₂ OH H 5 OH H OH H OH H OH F OH H OH H OH H OH S β-D-(+) - J- σ ζ σ η Ι- Ψ/ ζ ζ σ 1/ ξ 1)
	(ग) जलअपवारन पर स्क्रोस के धूर्णन चिह्न में परिवर्तन हाफ्रिण (+) से बाम (-) में हे जाता है तथा उत्पाद की अपवृत शर्करा कहते हैं।)
30	(a) (i) [Cr(H ₂ O) ₄ Cl ₂]Cl (ii) 6	1
	कियो जित है। जाते हैं जबकि संकुल यो कियो जिता है। अपने के प्रिक्त संकुल यो कियो जिता नहीं होते हैं।	1
	(i) [Cr(NH₃)₃Cl₃] < [Cr(NH₃)₅Cl]Cl₂< [Cr(NH₃)₅]Cl₃ 3-1 2(a) (v(ii)	,
	प्राथितक संघोजकता द्वितीयक रंग्योजकता	
	1. आंयननीय). अन - आयननीय	1.1
	२. ऋणालाई आयतें से २ ऋणालां आयतें या संतुष्ट दोते हैं। उदासीन अपुत्रों से संतुष्ट होती हैं।	2 7/2

(अभवा कीई अन्य हो अंतर)

31 (4)(i)			
(1) अर्मा अवस्ता कर्म कार्य के अर्थ के कारण । (1) अर्मा के अर्थ के कारण । (1) अर्मा के अर्थ के कारण । (1) अर्मा के अर्थ के कारण । (1) अर्म के जुला में कर्र इलेक्ट्राना झाँण दुर्नल के कारण । (1) किंक में पूर्ण भरित अ- कस्क (अ 10) के कारण, अन्य की रूर्न कारण में परमाण के कारण । (1) किंक में पूर्ण भरित अ- कस्क (अ 10) के कारण, अन्य की रूर्न कारण में परमाण एवं आयानक जिन्याओं में परमाण में कार में कारण आयानक जिन्याओं की श्राण में कार्य की अर्थ कार्य परिणाम) (1) अनम पिलतेनीय आमसीकरण अवस्थामों की प्रमान की प्रमान की प्रमान की प्रमाण के स्मान की प्रमाण के अल्व की कारण की अर्थ की आर्थित के कारण आर्थ के कारण आयान की आयान की प्रमाण की अल्व की कारण आयान की अर्थ की अर्थ की अर्थ की कारण आयान की अर्थ की अर्थ की अर्थ की अर्थ की की अर्थ की अर्थ की अर्थ की अर्थ की कारण आर्थ की अर्थ की अर्थ की की अर्थ की अर्य की अर्थ की अर्य की अर्थ		LAVE Z.	
(11) भागान्म ऑक्सीकरण अवस्य +3 कें अपन्येव हैं। (11) भी की तुला में 5 र इले कहानें झाए दुर्वल परिरक्षण के कारण। (11) किंक में पूर्ण भरित व - क्सक (व 10) के कारण, जिंक में पूर्ण भरित व - क्सक (व 10) के कारण, जिंक में पूर्ण भरित व - क्सक (व 10) के कारण, जिंक में पूर्ण भरित व - क्सक (व 10) के कारण, जिंक में पूर्ण के आरण अवस्था के आरण में पूर्ण में पूर्ण में पूर्ण में पूर्ण में कार में किं और अवस्था में अ	31		747
(11) भी की तुलम के ही इलेक्क्रमें क्वार दुवल परिस्काण के कारण। (11) भी की तुलम के ही इलेक्क्रमें क्वार दुवल परिस्काण के कारण। (11) जिंक के पूर्ण भरित व - कक्षक (व 10) के कारण, जिंक के पूर्ण भरित व - कक्षक (व 10) के कारण, जिंक के पूर्ण भरित व - कक्षक (व 10) के कारण, जिंक के पूर्ण भरित व कारण में के कारण जिंक के भरण जिंथानायड अणी में परमाण एवं आयानक जिंग्याओं में 1/2 अग्रवा को के कारण जिंथानायड अणी में परमाण एवं आयानक जिंग्याओं में 1/2 अग्रवा को के कारण जिंथानायड अणी में वार में काई और अर्थिकाय जिंथानायड अणी में वार में काई अर्थ परिणाम) (11) अन्म पास्त्रतीय आक्रिकारण अवस्थाओं की प्रमान की अग्रवा को होता / मंमुल गांधिक क्वान की प्रमान की आवा इलेक्ट्रानों के आवा इलेक्ट्रानों के आवा इलेक्ट्रानों की आवार इलेक्ट्रानों की आवारण में गुल अर्थ होता है जीवाक जिंक प्रमाण में गुल की में का का का होता है जीवाक जिंक प्रमाण में गुल की में का का होता है जीवाक जिंक प्रमाण में गुल की में का का होता है जीवाक जिंक प्रमाण में गुल की में का का होता है जीवाक जिंक प्रमाण में गुल की में का का होता है जीवाक जिंक प्रमाण में गुल की में का का होता है जीवाक जिंक प्रमाण की गुल होता में का होता है जीवाक जिंका प्रमाण होता में गुल का होता है जीवाक जिंका होता है जीवाक जिंका होता होता में गुल का का होता है जीवाक जिंका होता है जीवाक होता है जीवाक जिंका होता है जीवाक जिंका होता है जीवाक जिंका है जीवाक जिंका है जीवाक जिंका है जीवाक होता है जीवाक जिंका है जीवाक		///\ MnO _A + 5Fe ²⁺ + 8H* → Mn ²⁺ + 5 Fe ³⁺ + 4H ₂ O	1
(11) 4 में जी तुला में 5 र इलेक्क्रानों द्वार दुवला परिरक्षण के कारण। (11) जिंक में पूर्ण भरित अ- कसके (अ 10) के कारण, अविके र ए में इसकी उच्च कारण स्वेली र वे निरम जालामें (हाइड्रेश्ना) स्वेली के कारण अध्या अध्या में परमाण रव मायानक जिन्यामों में 1/2 माया अणी में परमाण रव मायानक जिन्यामों में 1/2 माया अणी में परमाण रव मायानक जिन्यामों में 1/2 माया अणी में परमाण रव मायानक जिन्यामों में 1/2 माया अणी में वार में कई और अध्वाय । 1) लेंशनायड अणी में जार में कई और अध्वाय । 1) लेंशनायड अणी में जार में कई और अध्वाय । 1) लेंशनायड अणी में जार में कई और अध्वाय । 2) अम्म किसी (अध्वा कोई अस्य परिणाम) (1) उनमें पस्तिनीय मामसीकरण उत्तवस्थामों की प्रमान की समसी विद्या प्रकार में गुड की सामसी विद्या प्रकार में गुड इलेक्ट्रानों के आधार के लिक्ट्रानों के आधार हलेक्ट्रानों के आधार के लिक्ट्रानों के आधार हलेक्ट्रानों के आधार हलेक्ट		(11) (1) माप्तान्म आवसीकरण अवस्या +3 में अपन्येत है।	i
परिस्काण के कारण। (11) जिंक में पूर्ण भरित व-क्सक (व 10) के कारण, अबकि (2 में इसकी उच्च कारण स्मेली रुवं तिम्न जालमेजान (हाइड्रेशन) स्मेली के कारण अस्मेली के कारण अस्मेल हास। (1) लेंश्वेनायड अणी में परमाणु एवं आयानक जिन्माओं में 1/2 आस्मेल हास। (1) लेंश्वेनायड अणी में परमाणु एवं आयानक जिन्माओं में 1/2 आसमेल हास। (1) लेंश्वेनायड अणी में खाए से कई और आरक्तीय । राज में कमी (अथवा कोई अस्म परिणाम) (1) उनमें पास्तिनीय ऑक्सेबिटण सबस्थाओं की प्रमान की अम्मेल के हाल में नुहु याधिक कान की प्रमान के हाल में नुहु याधिक के स्मान की अस्मेल के सामित्र के सामित्र के सामित्र के सामित्र की भागीवारी के कारण । (11) अन्तरापरमाणिक सालिक खेलन में नुहु अस्म में 3 विस्कृत अपूर्ण अस्त होता है अबकि जिंक परमाणु में मूल स्वार होता है अबकि जिंक परमाणु में मूल स्वार होता है अवकि जिंक परमाणु में मूल स्वार होता में अस्त होता है अवकि जिंक परमाणु में मूल स्वार होता में अस्त होता है अस्त होता है अवकि जिंक परमाणु में मूल स्वार होता है अस्त होता है अस्त होता है स्वार होता है स्वार हाता है स्वार होता है स्व		GIG/ S./.	
परिस्काण के कारण। (11) जिंक में पूर्ण भरित व-क्सक (व 10) के कारण, अबकि (2 में इसकी उच्च कारण स्मेली रुवं तिम्न जालमेजान (हाइड्रेशन) स्मेली के कारण अस्मेली के कारण अस्मेल हास। (1) लेंश्वेनायड अणी में परमाणु एवं आयानक जिन्माओं में 1/2 आस्मेल हास। (1) लेंश्वेनायड अणी में परमाणु एवं आयानक जिन्माओं में 1/2 आसमेल हास। (1) लेंश्वेनायड अणी में खाए से कई और आरक्तीय । राज में कमी (अथवा कोई अस्म परिणाम) (1) उनमें पास्तिनीय ऑक्सेबिटण सबस्थाओं की प्रमान की अम्मेल के हाल में नुहु याधिक कान की प्रमान के हाल में नुहु याधिक के स्मान की अस्मेल के सामित्र के सामित्र के सामित्र के सामित्र की भागीवारी के कारण । (11) अन्तरापरमाणिक सालिक खेलन में नुहु अस्म में 3 विस्कृत अपूर्ण अस्त होता है अबकि जिंक परमाणु में मूल स्वार होता है अबकि जिंक परमाणु में मूल स्वार होता है अवकि जिंक परमाणु में मूल स्वार होता में अस्त होता है अवकि जिंक परमाणु में मूल स्वार होता में अस्त होता है अस्त होता है अवकि जिंक परमाणु में मूल स्वार होता है अस्त होता है अस्त होता है स्वार होता है स्वार हाता है स्वार होता है स्व		(11) 41 की तलाना में 5 र इलेक्ट्राना झाए दुर्वला	,
(111) जिंक के पूर्ण मिरत व- कसक (व 10) के कारण, अबिक (2 के इसकी उच्च काण, रूट बेली रवं मिला जाता में हारा कि जारण अविकास कि कारण अध्या के कारण		प्रिक्या के कारण	
जिस्त है ए हैं इसकी उन्म कार्ग रेन्यली रेन जिस्त जलगेजन (हाइड्रेशन) रुन्यली के कारण अथवा अथवा लेथनाथड अणी में परमाणु एवं आयानका निज्याओं में 1/2 प्राप्तिक हास । शिलेथनाथड अणी में खाए में कई और अएकाय । श्री हास । श्री श्री होस । श्री श्री होस । श्री श्री होस । श्री अन्में पास्तिनीय आमसीकरण स्वस्थाओं की क्याने की क्षामता का होना / संकुल गाणिका क्याने की क्षामता का होना / संकुल गाणिका क्याने की प्रवृत्ति / वृह ५ प्रष्ठतल कीत्र (॥) अत्ररापरमाणिका धारिका बंधान में १९८ आया इलेक्ट्रानों की आतार्यत (१०-१) व इलेक्ट्रानों के आया इलेक्ट्रानों की आतार्यत की कारण श्री श्री स्वाप्ति की कारण		C > = 0 1 1 101 (d 10) 2 41301	
अथवा अथवा (हाइ देशा) अन्येली के भारण अथवा विश्व (() () () लिंथेनायुड आकं वन लिंथेनायुड अणी में परमाणु एवं आयानका निम्याओं में 1/2 आमक हास। () अर्थनायुड अणी में परमाणु एवं आयानका निम्याओं में 1/2 आमक हास। () अर्थनायुड अणी में खाए से कई और आरक्तिया गण में कामी (अथवा कोई अल्य परिणाम) () अर्थना की अथवा कोई अल्य परिणाम) () अर्थना की क्षामता का होबा / संकुल याधिका कान की प्रवृत्ति विहास प्रवृत्ति याधिका कान की प्रवृत्ति / वृह्प प्रवृत्ति के कारण () अर्थना के अत्तिर्भत (११-१) व इलेक्ट्रानों के अथवा इलेक्ट्रानों की आर्थीकारी के कारण () अर्थना होता है अब्रांक जिंक परमाणु में मूल्य		(11) 100 20 And May a what a a what car a many	
अध्या उत्त (i / I) लेंचे नाय असंवन लेंचे नाय अणी में परमाणु एवं आयानक निज्याओं में //2 प्राप्तिक हास । प्राण्य में कामी (अध्वा कोई अरु परिणाम) प्राण्य में पास्ततनीय ऑक्सीकरण उत्तवस्थाओं की क्यान की स्वात का होता / मंकुल योधिक क्यान की प्रवृत्ति / वृह ५ प्रष्ठतत कीम प्राण्य की समता का होता / मंकुल योधिक क्यान की प्रवृत्ति / वृह ५ प्रष्ठतत कीम आध्यक इत्यक्ति की आतिर्वत (१०-१) व इत्यक्ति अपूर्ण अप्रित होता है जबाकी जिंक परमाणु में मुल अप्रित होता है जबाकी जिंक परमाणु में मुल			
अध्या उत्त (i / I) लेंचे नाय असंवन लेंचे नाय अणी में परमाणु एवं आयानक निज्याओं में //2 प्राप्तिक हास । प्राण्य में कामी (अध्वा कोई अरु परिणाम) प्राण्य में पास्ततनीय ऑक्सीकरण उत्तवस्थाओं की क्यान की स्वात का होता / मंकुल योधिक क्यान की प्रवृत्ति / वृह ५ प्रष्ठतत कीम प्राण्य की समता का होता / मंकुल योधिक क्यान की प्रवृत्ति / वृह ५ प्रष्ठतत कीम आध्यक इत्यक्ति की आतिर्वत (१०-१) व इत्यक्ति अपूर्ण अप्रित होता है जबाकी जिंक परमाणु में मुल अप्रित होता है जबाकी जिंक परमाणु में मुल		निभा जलभेजान (हाइडेशान) रान्याली के कारण	'
अपा में परमाण एवं आयानक निम्याओं में १/२ प्रामिक हार । पा लेशनायड अणी में परमाण एवं आयानक निम्याओं में १/२ प्रामिक हार । पा लेशनायड अणी में खाए में कह और अध्कार । रा लेशनायड अणी में खाए में कह और अध्कार । रा लेशनायड अणी में खाए में कह और अध्कार । रा लेशनायड अणी में खाए में कह और अध्कार । रा अमें पाखतिनीय ऑक्सीकरण उत्तवस्थाओं की । दशकि की क्षामता का होता / संकुल योधिक । दशकि की समता का होता / संकुल योधिक । दशकि की प्रवृत्ति / वृह ५ पृष्ठिमल की एउ । इलेक्ट्रॉनों की आमिरिक्त (१०-१) व इलेक्ट्रॉनों के आधार इलेक्ट्रॉनों की आधार इलेक्ट्रॉनों की आधार इलेक्ट्रॉनों की अमिल अधार की मूल अध्वर्या में ३ विकास अपूर्ण अस्ति होता है जवाक जिंक परमाण में मूल में अस्ति होता है जवाक जिंक परमाण में मूल		219111	
मिनायड क्रिणी में परमाणु एवं आयानक जिन्यां में गृह क्रिक्स हास । श्री में उत्तर के क्रिक्स क्रिक्स हास । श्री में बन्धी (अथवा कोई अल्य परिणाम) श्री उनमें पिलतेनीय ऑनसीकरण सबस्थाओं की द्वान की क्रिक्स का होता / संकुल गांधिक काने की प्रवृत्ति / वृह ५ पृष्ठतत क्षेत्र (॥) अंतरापरमाणिवन व्यादिक बंधन में १९ इंबर्स्स में अर्थ अर्थों के आवाम इंबर्स्स की भागीवारी के कारण ॥) ९८ की मूल अवस्था में ३० कार्य अपूर्ण भित्र होता है जैवांक जिंक परमाणु में मूल अर्था में उन्न का स्वास अपूर्ण भित्र होता है जैवांक जिंक परमाणु में मूल	31	(30)(: 17) to 1	1/2
प्राम्म हार) प्राण में का अंग के कह और अर्थनाय । गुण में का (अथवा कोई अर्थ परिणाम) प्राण में का (अथवा कोई अर्थ परिणाम) कान की अव्यान का हो वा / मंकुल या प्रिमा का का में गुड़ पर्या के स्वाम के अथवा के अथवा में अड़ कि कारण । प्राण अर्थ होना है अवाक जिंक परमाण में मूल अर्थ होना में मूल होना में मूल अर्थ होना होना में मूल अर्थ होना होना होना होना होना होना होना होना		ने ने निर्मानिक निर्मानिक मिन्यामा मे	1 . 1
गण में कामी (अथवा कोई अरुम परिणाम) (1) उनमें परिवानीय सामसीकरण सबस्थाओं की क्याने की क्याने की स्वाने की प्रवान की अतिरक्त (१-1) वे इलेक्ट्रानों की आवान इलेक्ट्रानों की आतिरक्त (१-1) वे इलेक्ट्रानों की आवान इलेक्ट्रानों की अतिरक्त धिन परमाण में मूल अरित होता है अबाक जिंक परमाण में मूल अरित होता है अबाक जिंक परमाण में मूल की स्वान की स्वान में मूल अरित होता है अबाक जिंक परमाण में मूल की स्वान की स्वान में मूल स्वान की स्वान		लगुनायड श्रेणा म परमाणु हव अस्तिमा गर्म गाँउ॥ ग	1/2
गुण में कार्सी (अथवा कार्ड अत्य परिणाम) (1) उनमें पिखर्तनीय ऑक्सीकरण उत्तवस्थाओं की प्रश्नि की क्षामता का होना / संकुल योधिक बनाने की प्रवृत्ति / बृह ५ पृष्ठमल क्षेत्र (11) अंत्ररापरमाण्विका ध्याद्यिक खंधन में गुड इलेक्ट्रॉनों के अतिरिक्त (११-१) व इलेक्ट्रॉनों के आवाक इलेक्ट्रॉनों की भागीदारी के कारण (11) Sc की मूल अवस्था में 3 विकास अपूर्ण अदित होता है जबाक जिंक परमाणु में मूल		आमिका हारी।	,
गुण में कार्सी (अथवा कार्ड अत्य परिणाम) (1) उनमें पिखर्तनीय ऑक्सीकरण उत्तवस्थाओं की प्रश्नि की क्षामता का होना / संकुल योधिक बनाने की प्रवृत्ति / बृह ५ पृष्ठमल क्षेत्र (11) अंत्ररापरमाण्विका ध्याद्यिक खंधन में गुड इलेक्ट्रॉनों के अतिरिक्त (११-१) व इलेक्ट्रॉनों के आवाक इलेक्ट्रॉनों की भागीदारी के कारण (11) Sc की मूल अवस्था में 3 विकास अपूर्ण अदित होता है जबाक जिंक परमाणु में मूल		णि लेशनाय में जार से कार से कार कारकार	'
(1) उनमें पिस्तिनीय समसीकरण अवस्थाओं की दशनि की क्षामता का होता / संसुल योधिक क्षाने की प्रवृत्ति / यह ५ पृष्ठतत की प्रवृत्ति / यह ५ पृष्ठतत की प्रवृत्ति / यह ५ पृष्ठतत की प्रवृत्ति । अत्रापरमाण्विक ध्यात्विक खंधन में गुड़ इलेक्ट्रॉनों के अतिरिक्त (११-१) व इलेक्ट्रॉनों की अविवाद की कारण गा) Sc की मूल अवस्था में 3d कारण भी मूल अवस्था में 3d कार्यों भी अरित होता है जबाक जिंक परमाण में मूल		गण में उपी (यश्वा कोई सत्य परिणाम)	
(1) उनमें पांसतेनीय आन्सीकरण सबस्याआ जा। प्रानि की क्षामता का द्येता / संकुल गींग्रिक बनान की प्रवृत्ति / वृह ५ पृष्ठतत क्षेत्र (11) अत्ररापरमाण्विका धार्तिका बंधन में १९ऽ इलेक्ट्रॉनों के अतिरिक्त (११-१) व इलेक्ट्रॉनों के आध्यक इलेक्ट्रॉनों की भागीवारी के कारण 11) Sc की मूल अवस्था में 3व कार्या भित्त द्येता है जबाका जिंक परमाण में मूल			
प्यानि की क्षामता का होगा / संकुल गाँधिका बनाने की प्रवृत्ति / वृह ५ पृष्ठतत क्षेत्र (॥) अंतरापरमाण्विका ध्यात्विका बंधन में १९८ इते कर्त्रामों के अतिरिक्त (११-१) व इते कर्रामों के अध्यक्ष इते कर्त्रामों के आधाव इते कर्त्रामों की आधीवरी के कारण ॥) ९८ की मूल अवस्था में ३ व क्राव्या अपूर्ण अरित होता है जवाका जिंक परमाणु में मूल अरित होता है जवाका जिंक परमाणु में मूल		(u) न ० ० ० वर्षासीया	,
मान की प्रवृत्ति / वृह ५ पृष्ठितल क्षेत्र (॥) अंतरापरमाण्विका ध्वात्विका बंधन में गुड इतेक्ट्रॉनों के अतिरिक्त (१०-१) व इतेक्ट्रॉनों के अध्यक इतेक्ट्रॉनों की भागीक्रिश के कारण ॥) Sc की मूल अवस्था में 3d कार्या भिरत होता है जबाका जिंका परमाण में मूल		(1) उनम पास्ततनाय अनिसावारण उपद्भारण	
मान की प्रवृत्ति / वृह ५ पृष्ठितल क्षेत्र (॥) अंतरापरमाण्विका ध्वात्विका बंधन में गुड इतेक्ट्रॉनों के अतिरिक्त (१०-१) व इतेक्ट्रॉनों के अध्यक इतेक्ट्रॉनों की भागीक्रिश के कारण ॥) Sc की मूल अवस्था में 3d कार्या भिरत होता है जबाका जिंका परमाण में मूल		दशनि की क्षामता का होता / संकुल यापिका	
(ग) अंतरापरमाण्विक धार्तिक बंधन में ns इतेक्ट्रॉनों के अतिर्मत (n-1) व इतेक्ट्रॉनों के अव्यक्त इतेक्ट्रॉनों की आशिक्त की काशिक्त के कारण गा) Sc की मूल अवस्था में 3d कार्राण भित्र होता है जबाक जिंक परमाण में मूल		बनाने की एनी / वटा, पड़र्सल क्षेत्र	
इलेक्ट्रॉनों के अतिरिक्त (११-१) व इलेक्ट्रॉनों के अध्यक इलेक्ट्रॉनों की भागीदारी के कारण गा) Sc की मूल अवस्था में 3d कार्या भी भूल अपरेश में अब समाण में मूल अपरेश में अब परमाण में मूल		Agin, Zet e one the	
गा) Sc की मूल अवस्था में 3d कार्यका अपूर्ण अरित द्वारा है जबाक जिंक परमाण में मूल	ļ	ा) अतरापरमाण्यका धारिवका वधन म ns	
गा) Sc की मूल अवस्था में 3d कार्यका अपूर्ण अरित द्वारा है जबाक जिंक परमाण में मूल		इलेक्ट्रांमी के सिर्मार्थन (n-1) d इलेक्ट्रांमी के	
गा) Sc की मूल अवस्था में 3d कार्यका अपूर्ण अरित द्वारा है जबाक जिंक परमाण में मूल		70 x 2 1 11 11 del 200/21/21 de 201/21/21	
ाा) Sc की मूल अवस्था में 3d कार्यका अपूर्ण अदित होता है जबांक जिंक परमाणु में मूल अवस्था तथा ऑक्सीकरण अवस्था दोनों में ही इसका कक्षक पूर्ण भरित होता है।		silvan smacion un anomari un anter	
अदित होता है जबांक जिंक परमाणु में मूल अवस्था तथा ऑबसीकरण अवस्था दोनों में ही इसका क्यांक पूर्ण भारत होता है।		111) Sc की मल अवस्था में 3d कार्यका अगुण	,
अवस्था तथा ऑबसीकरण अवस्था दोनों में ही इसका कांत्रक पूर्ण भरित होता है।		े के कि कि कि कि कि मार्थ में मार्थ की मार्थ	
अवस्था तथा आवसीकरण अवस्थी द्वाना में ही इसका काम्रक पूर्ण भारत होता है।		STRN EINI & SIGION NO.	
ही इसमा काम्रक पूर्ण भारत होता है।		अवस्था तथा आवस्पाकरण अवस्था दाना म	
El Suan argian 191 orial cres		की कार्य साम अपने होता है।	
		SI SHAN CITICAL TO OUT CITICAL	

32	का का अपन्यम आभिक्रया के रूप में रहेगी /। (1) उत्तरी हीकर ऑक्सीकरण आभिक्रया ही जारणी	1/2
	· Cr का निम्न अपरायन विभव के कारण	1_
	(ii) आश्राक्रया का निरुपण	
	Mg(s)/Mg ²⁺ (aq,0.100M) Ag ⁺ (aq,0.001M)/Ag(s)	1
	n=2	
	$E_{\text{nF}}^{9} = E^{\circ} \underbrace{\frac{2.303RT}{nF}}_{\text{nF}} \log \frac{[\text{Mg}^{2+}]}{[\text{Ag}^{+}]^{2}}$ $= 3.17 - \frac{0.059}{2} \log \frac{0.100}{(0.001)^{2}}$	72
	$=3.17 - \frac{0.059}{3} \log \frac{0.100}{(0.001)^2}$	
	$=3.17 - \frac{0.059}{2} \log 10^5$)
	$= 3.17 - 0.0295 \times 5$	
	= 3.17 - 0.1475	
	= 3.0225 V or 3.02 V	1/2
	म्)() विभी वधुतअपध्य की सीमांत मीसर चलका।	
32	(क)(b) विभा वधुनअपध्य का सामात मानर चलकाता	1_
	की उसके धनायून एवं जरणायन के उत्पा -अलग	62
	वीग्रादान के योग के बराबर निरुपित किया जा सकत	92
	0 1 99	
	। किसी वैद्युतअपदार्य की मीलर चालकता जात	1/2
	कारन के लिस	1'.
	२. दुर्बल वैद्युतअपघट्य के तियोजन रिश्यंक ज्ञात करने के लिए। (अथवा की इ अत्य अपुक्त अनुप्रयोग)	1/2
	L. Gam Delas La	' -
	जात करने के लिए।	
	(१ राज्य कीड याजा ३५थवर अनिप्रथमा)	
	(3724) 4110 3167 3 3.2.	
		.,
	(ii)Λ°mNH4OH = Λ°mNH4Cl +Λ°mNaOH – Λ°mNaCl	1/2
	= 129.8 + 217.4 - 108.9	1
	=238.3 Scm ² mol ⁻¹	
	$\alpha = \frac{\Lambda m^c}{\Lambda^c m}$	1/2
	$=\frac{9.33}{230.3}$	
	=0.039 /3.9%	1
33	काण रैमीन 'x' ८५८०० वे साथ आया किया करके तेक	4 1/2+1/3
	में घलनेशील आग्ने देता है इसालए एमोन 'x'एव	7/27/2
	प्राथमिक एमान है, CH2H2NH, /एथेनेमीन / स्थान एम	
	1 4 10 C 10 C 1 3 2 2/ C4 1 101 / (140)	1'.
	(ii) (CH ₃) ₂ NH <ch<sub>3NH₂ < (CH₃)₃N < NH₃ <c<sub>6H₅NH₂</c<sub></ch<sub>	1
	I WATER OF THE DIESTS A DELMIN TICKER	74
	एनिलिनियम आयत बनाता है जी मेटा निर्देश के है	<u>/</u> ·
	ानात्मानम् जायम वनाता ह जा नेटा निवर्षाया	
<u> </u>		

	(iv)(I) NH ₂ H-N-C-CH ₃ Br ₂ CH ₂ CO ₃ C Br ₃ CH ₂ CO ₃ C Br ₄ OH or H ² Br (II)	1
	$C_6H_5NH_2 + NaNO_2 + 2HCI \xrightarrow{(0-5^{\circ}C)} C_6H_5N_2^{+}Ci^{-} \xrightarrow{H_2O_2283K} C_6H_5OH$)
	मुश्व।	
33	(i)	
	CH₃CH₂NH₂ + CHCl₃+ 3KOH(EtOH)	
		1
	(ii)A = NO2	1
	B = 0 NH2	1
	(iii) $C_6H_5NH_2 + NaNO_2 + 2HCl \xrightarrow{(0-5^*C)} C_6H_5N_2^+Cl^- \xrightarrow{CH_3CH_2OH} C_6H_6$	1
	(II)	1
	$ \begin{array}{c} $	