

Series: WYXZ5

प्रश्न-पत्र कोड Q.P. Code

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

क्पया जाँच कर लें कि इस प्रश्न-पत्र में मृद्रित पृष्ठ 23 हैं। (I)

Please check that this question paper contains 23 printed pages.

प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर (II)लिखें ।

Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

(III) कपया जाँच कर लें कि इस प्रश्न-पत्र में 33 प्रश्न हैं। Please check that this question paper contains 33 questions.

(IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथा स्थान पर प्रश्न का क्रमांक अवश्य लिखें।

Please write down the Serial Number of the question in the answer-book at the given place before attempting it.

(V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पर्ढ़ेंगे और इस अवधि के दौरान वे उत्तर-पस्तिका पर कोई उत्तर नहीं लिखेंगे।

15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not

write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे

अधिकतम अंक : 70

Time allowed: 3 hours

Maximum Marks: 70

सामान्य निर्देश :

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में 33 प्रश्न है। सभी प्रश्न अनिवार्य हैं।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **खण्ड क, ख, ग, घ,** एवं **ङ**।
- (iii) खण्ड क प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) **खण्ड ख** प्रश्न संख्या **17** से **21** तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न **2** अंकों का है।
- (v) **खण्ड ग** प्रश्न संख्या **22** से **28** तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न **3** अंकों का है।
- (vi) खण्ड घ प्रश्न संख्या 29 तथा 30 केस-आधारित प्रश्न हैं। प्रत्येक प्रश्न 4 अंकों का है।
- (vii) खण्ड ङ प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड क के अतिरिक्त अन्य सभी खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग **वर्जित** है।

खण्ड क

प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के 1 अंक के प्रश्न हैं।

 $16 \times 1 = 16$

- 1. रसायन प्रयोगशाला में गुणात्मक विश्लेषण करते समय अभिषेक ने एक परखनली में पीले रंग का पोटैशियम क्रोमेट विलयन डाला। वह यह देखकर अचिम्भत हो गया कि विलयन का रंग तुरंत नारंगी रंग में बदल गया। उसे यह अनुभूति हुई कि परखनली साफ नहीं थी अपितु उसमें किसी अन्य द्रव की कुछ बूँदें थीं। निम्नलिखित पदार्थों में से परखनली में पोटैशियम क्रोमेट विलयन डालने से पहले कौन-सा सर्वाधिक संभावित द्रव उपस्थित था?
 - (A) सोडियम हाइड्रोजन कार्बोनेट विलयन
 - (B) मेथिल ऑरेंज विलयन
 - (C) सोडियम हाइड्रॉक्साइड विलयन
 - (D) HCl विलयन
- **2.** उत्प्रेरक परिवर्तित करते हैं :
 - (A) साम्यावस्था स्थिरांक
 - (B) अभिक्रिया की एन्थैल्पी
 - (C) अभिक्रिया की गिब्ज़ ऊर्जा
 - (D) अभिक्रिया की सक्रियण ऊर्जा

General Instructions:

Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into **five** sections **Section A**, **B**, **C**, **D** and **E**.
- (iii) Section A questions number 1 to 16 are multiple choice type questions. Each question carries 1 mark.
- (iv) **Section B** questions number **17** to **21** are very short answer type questions. Each question carries **2** marks.
- (v) **Section C** questions number **22** to **28** are short answer type questions. Each question carries **3** marks.
- (vi) **Section D** questions number **29** and **30** are case-based questions. Each question carries **4** marks.
- (vii) **Section E** questions number **31** to **33** are long answer type questions. Each question carries **5** marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the sections except Section A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculator is **not** allowed.

SECTION A

Questions no. 1 to 16 are Multiple Choice type Questions, carrying 1 mark each. $16 \times 1=16$

- 1. While doing qualitative analysis in chemistry lab, Abhishek added yellow coloured potassium chromate solution into a test tube. He was surprised to see the colour of the solution changing immediately to orange. He realised that the test tube was not clean and contained a few drops of some liquid. Which of the following substances will be the most likely liquid to be present in the test tube before adding potassium chromate solution?
 - (A) Sodium hydrogen carbonate solution
 - (B) Methyl orange solution
 - (C) Sodium hydroxide solution
 - (D) HCl solution
- **2.** The role of a catalyst is to change :
 - (A) equilibrium constant
 - (B) enthalpy of reaction
 - (C) Gibbs energy of reaction
 - (D) activation energy of reaction

3. स्तंभ I में दिए गए सेल के प्रकार को स्तंभ II में दिए गए उनके उपयोग से मिलान कीजिए :

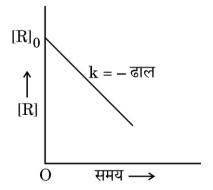
	स्तंभ I		स्तंभ II
i.	लेड संचायक सेल	a.	दीवार घड़ी
ii.	मर्क्यूरी सेल	b.	अपोलो अंतरिक्ष कार्यक्रम
iii.	शुष्क सेल	c.	कलाई घड़ी
iv.	ईंधन सेल	d.	इनवर्टर

(A) i-a, ii-b, iii-c, iv-d

(B) i-d, ii-c, iii-a, iv-b

(C) i-c, ii-d, iii-b, iv-a

(D) i-b, ii-a, iii-d, iv-c


4. CH_3CH_2OH को CH_3CHO में परिवर्तित किया जा सकता है :

- (A) उत्प्रेरकीय हाइड्रोजनन द्वारा
- (B) $LiAlH_4$ के साथ अभिक्रियित करके
- (C) PCC के साथ अभिक्रियित करके
- (D) $KMnO_4$ के साथ अभिक्रियित करके

5. $CH_3 - CH_2 - N(CH_3) - CH_2 - CH_2 - CH_3$ का IUPAC नाम है :

- (A) N-मेथिलपेन्टेन-2-ऐमीन
- (B) N-एथिल-N-मेथिलप्रोपेन-1-ऐमीन
- (C) N,N-डाइएथिलप्रोपेन-1-ऐमीन
- (D) N,N-डाइमेथिलप्रोपेन-1-ऐमीन

6. अभिकारक की सांद्रता [R] और समय 't' के मध्य आलेख नीचे दर्शाया गया है। यह आलेख दी गई अभिक्रिया की कोटि में से किसको इंगित करता है ?

(A) तृतीय कोटि

(B) द्वितीय कोटि

(C) प्रथम कोटि

(D) शून्य कोटि

3. Match the type of cell given in Column I with their use given in Column II.

	Column I		Column II
i.	Lead storage cell	a.	Wall clock
ii.	Mercury cell	b.	Apollo Space Programme
iii.	Dry cell	c.	Wrist watch
iv.	Fuel cell	d.	Inverter

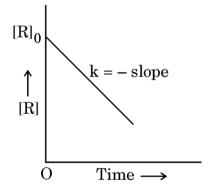
(A) i-a, ii-b, iii-c, iv-d

(B) i-d, ii-c, iii-a, iv-b

(C) i-c, ii-d, iii-b, iv-a

(D) i-b, ii-a, iii-d, iv-c

4. CH₃CH₂OH can be converted to CH₃CHO by :


- (A) catalytic hydrogenation
- (B) treatment with $LiAlH_{4}$
- (C) treatment with PCC
- (D) treatment with $KMnO_4$

5. The IUPAC name for $CH_3 - CH_2 - N(CH_3) - CH_2 - CH_2 - CH_3$ is :

- (A) N-methylpentan-2-amine
- (B) N-ethyl-N-methylpropan-1-amine
- (C) N,N-diethylpropan-1-amine
- (D) N,N-dimethylpropan-1-amine

6. A plot between concentration of reactant [R] and time 't' is shown below.

Which of the given order of reaction is indicated by the graph?

(A) Third order

(B) Second order

(C) First order

(D) Zero order

		36 Table 1	76 18 18		
7.	एथिल	ब्रोमाइड, ऐल्कोहॉली सिल्वर नाइट्राइट के स	ाथ अभिद्रि	क्रेया कर	के देता है :
	(A)	एथिल नाइट्राइट		(B)	नाइट्रोएथेन
	(C)	नाइट्रोमेथेन		(D)	एथीन
8.	निम्नि	लेखित जलीय विलयनों में से किसका हिमांक	उच्चतम	होगा ?	
	(A)	1·0 M KCl		(B)	$1.0~\mathrm{M~Na_2SO_4}$
	(C)	1·0 M ग्लूकोस		(D)	$1{\cdot}0 \; \mathrm{M} \; \mathrm{AlCl}_3$
9.	निम्नि	लेखित में से कौन-सा ऐल्डिहाइड कैनिज़ारो अ	ाभिक्रिया र	देगा ?	
	(A)	$CH_3 - CH - CHO$			
		$^{ m I}_{ m CH}_3$			
	(B)	$(CH_3)_3C$ CHO			
	(C)	$\mathrm{CH}_3 - \mathrm{CH}_2 - \mathrm{CHO}$			
	(D)	$\mathrm{CH_3} - \mathrm{CH} - \mathrm{CH} - \mathrm{CHO}$			
		$^{I}_{\mathrm{CH}_3}$ $^{I}_{\mathrm{CH}_3}$			
10.	निम्नि	लेखित समूहों में से किसके दोनों आयन जली	य विलयन	में रंगीन	हैं ?
		Cu ⁺ II. Ti ⁴⁺ III णु क्रमांक : Cu = 29, Ti = 22, Co = 2			IV. Fe ²⁺
	(A)	I और II		(B)	II और III
	(C)	III और IV		(D)	I और IV
11.	निम्नि	लेखित अणुओं में से किसकी प्रकृति किरेल है	?		
	(A)	1-क्लोरोप्रोपेन	(B)	2-क्लो	रोप्रोपेन
	(C)	1-क्लोरोब्यूटेन	(D)	2-क्लो	रोब्यूटेन
12.	CH_2	CH ₂ CHO और CH ₃ CH ₂ COOH के म	ाध्य किसवे	के द्वारा वि	त्रेभेद किया जा सकता है ?
	o	2 2		_	0 0

- (A) सोडियम बाइकार्बोनेट परीक्षण
- (B) हिन्सबर्ग परीक्षण

आयोडोफॉर्म परीक्षण (C)

(D) ल्यूकास परीक्षण

7.	The tre	eatment	of ethyl	bromide	with	alcoholic	silver	nitrite	oives
1.	THE H	aument	or emilia	DIUIIIUE	WILLI	aicononic	DILACI	1111111111	gives .

(A) ethyl nitrite

(B) nitroethane

(C) nitromethane

(D) ethene

8. Which of the following aqueous solutions will have the highest freezing point?

(A) 1.0 M KCl

(B) $1.0 \text{ M Na}_2\text{SO}_4$

(C) 1.0 M Glucose

(D) 1.0 M AlCl₃

9. Which of the following aldehydes will undergo Cannizzaro reaction?

$$\begin{array}{cc} \text{(A)} & \text{CH}_3 - \text{CH} - \text{CHO} \\ & | \\ & \text{CH}_2 \end{array}$$

- (B) $(CH_3)_3C$ CHO
- (C) $CH_3 CH_2 CHO$

$$\begin{array}{ccc} \text{(D)} & \text{CH}_3 - \text{CH} - \text{CH} - \text{CHO} \\ & | & | \\ & \text{CH}_3 & \text{CH}_3 \end{array}$$

10. In which of the following groups are both ions coloured in aqueous solution?

- I. Cu⁺
- II. Ti⁴⁺
- III. Co^{2+}
- IV. Fe^{2+}

[Atomic number : Cu = 29, Ti = 22, Co = 27, Fe = 26]

(A) I and II

(B) II and III

(C) III and IV

(D) I and IV

11. Which of the following molecules is chiral in nature?

(A) 1-chloropropane

(B) 2-chloropropane

(C) 1-chlorobutane

(D) 2-chlorobutane

12. CH₃CH₂CHO and CH₃CH₂COOH can be distinguished by :

- (A) Sodium bicarbonate test
- (B) Hinsberg test

(C) Iodoform test

(D) Lucas test

प्रश्न संख्या 13 से 16 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए।

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या **नहीं** करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (D) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।
- 13. अभिकथन (A): ऐत्किल हैलाइडों के क्वथनांकों के घटने का क्रम RI > RBr > RCl > RF है। antiverapprox and <math>antiverapprox and <math>antiverapprox and antiverapprox and antiverapprox and <math>antiverapprox and antiverapprox and antiverapprox and <math>antiverapprox and antiverapprox antiverapprox and antiverapprox and antiverapprox and antiverapprox antiverapprox and antiverapprox and antiverapprox and antiverapprox and antiverapprox and antiverapprox and antiverapprox antiverapprox and antiverapprox and antiverapprox and antiverapprox and antiverapprox and antiverapprox and antiverapprox antiverapprox and antiverapprox and antiverapprox antiverapprox antiverapprox antiverapprox antiverapprox antiverapprox and antiverapprox
- **14.** अभिकथन (A): आयनिक विलयन के प्रतिरोध को मापने के लिए AC स्रोत का उपयोग किया जाता है।
 - कारण (R): यदि DC स्नोत का उपयोग किया जाता है तो आयिनक विलयन की सांद्रता बदल जाएगी।
- **15.** अभिकथन (A) : ताप में वृद्धि के साथ हेनरी नियम स्थिरांक (K_H) घटता है । कारण (R) : जैसे-जैसे ताप बढ़ता है, द्रवों में गैसों की विलेयता घटती है ।
- **16.** अभिकथन (A) : जैसे-जैसे ऐल्किल समूह का आकार बढ़ता है, ऐल्डिहाइडों और कीटोनों की जल में घुलनशीलता घटती जाती है।
 - कारण (R): ऐल्डिहाइडों और कीटोनों में द्विध्रुव-द्विध्रुव अन्योन्यक्रियाएँ होती हैं।

खण्ड ख

 $S~cm^2~mol^{-1}$ में $298\cdot15~K$ **17.** mol/L में KCl विलयन $S cm^{-1} + 298.15 K$ पर मोलर चालकता की सांद्रता पर चालकता 1.000 0.1113111.30.1000.0129129.00.0100.00141141.0

ऊपर दिए गए आँकड़ों के आधार पर, सांद्रता के साथ चालकता और मोलर चालकता में परिवर्तन के लिए संभावित कारण दीजिए।

For Questions number 13 to 16, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- **13.** Assertion (A): The boiling points of alkyl halides decrease in the order RI > RBr > RCl > RF.
 - Reason (R): The van der Waals forces of attraction decrease in the order RI > RBr > RCl > RF.
- **14.** Assertion (A): For measuring resistance of an ionic solution an AC source is used.
 - *Reason (R)*: Concentration of ionic solution will change if DC source is used.
- 15. Assertion(A): Henry's law constant (K_H) decreases with increase in temperature.
 - Reason (R): As the temperature increases, solubility of gases in liquids decreases.
- **16.** Assertion (A): The solubility of aldehydes and ketones in water decreases with increase in size of the alkyl group.
 - *Reason (R)*: Aldehydes and ketones have dipole-dipole interaction.

SECTION B

		DECITOT(B	
17.	Concentration of KCl solution in mol/L	Conductivity at 298·15 K in S cm ⁻¹	Molar Conductivity at 298·15 K in S cm ² mol ⁻¹
	1.000	0.1113	111.3
	0.100	0.0129	129.0
	0.010	0.00141	141.0

Based on the data given above, give plausible reason for the variation of conductivity and molar conductivity with concentration.

2

56/5/2 # 9 # P.T.O.

 $CaCl_2$ (मोलर द्रव्यमान = $111~g~mol^{-1}$) के 3~g को 260~g जल में घोलने पर बनने 18. **(क)** वाले विलयन के क्वथनांक का उन्नयन, यह मानते हए कि CaCl2 पूर्णतया वियोजित हो गया है, परिकलित कीजिए। (जल के लिए $K_b = 0.52~K~kg~mol^{-1}$) 2 अथवा 'X' और 'Y' द्रव आदर्श विलयन बनाते हैं। शुद्ध 'X' और शुद्ध 'Y' के वाष्प दाब क्रमश: (ख) 120 mm Hg और 160 mm Hg हैं। 'X' और 'Y' के समान मोलों को मिलाकर बनने वाले विलयन का वाष्प दाब परिकलित कीजिए। 2 वेग स्थिरांक की परिभाषा लिखिए। 19. (क) 1 उस अभिक्रिया कोटि की पहचान कीजिए जिसका वेग स्थिरांक $4\cdot 5 imes 10^{-5}~{
m L}\,{
m mol}^{-1}\,{
m s}^{-1}$ (ख)

20. $413~{
m K}$ पर सांद्र ${
m H}_{
m 9}{
m SO}_{
m 4}$ के साथ एथिल ऐल्कोहॉल के निर्जलन की क्रियाविधि लिखिए। 2

21. (क) 3-पेन्टेनोन और 2-पेन्टेनोन के मध्य विभेद करने के लिए एक सरल रासायनिक परीक्षण दीजिए। 1

(ख) क्लीमेन्सन अपचयन के लिए समीकरण लिखिए।

खण्ड ग

22. अभिक्रिया $A + B \rightarrow 3$ त्पाद के लिए, अभिकारकों की विभिन्न प्रारंभिक सांद्रताओं के लिए निम्नलिखित प्रारंभिक वेग प्राप्त हुए :

क्रमांक	$[A]/mol\ L^{-1}$	$[B]/mol\ L^{-1}$	प्रारंभिक वेग / $mol~L^{-1}~s^{-1}$
1	0.1	0.1	0.05
2	0.2	0.1	0.10
3	0.1	0.2	0.05

A और B के सापेक्ष अभिक्रिया की कोटि और अभिक्रिया की समग्र कोटि ज्ञात कीजिए।

1

है।

18. (a) Calculate the elevation of boiling point of a solution when 3 g of $\text{CaCl}_2 \text{ (Molar mass} = 111 \text{ g mol}^{-1} \text{) was dissolved in 260 g of water,}$ assuming that $\text{CaCl}_2 \text{ undergoes complete dissociation.} \text{ (K}_b \text{ for water} = 0.52 \text{ K kg mol}^{-1} \text{)}$

2

OR

(b) Liquids 'X' and 'Y' form an ideal solution. The vapour pressure of pure 'X' and pure 'Y' are 120 mm Hg and 160 mm Hg respectively. Calculate the vapour pressure of the solution containing equal moles of 'X' and 'Y'.

2

19. (a) Define rate constant.

1

(b) Identify the reaction order which has a rate constant of $4\cdot 5\times 10^{-5}\;L\;mol^{-1}\;s^{-1}.$

1

20. Write the mechanism of dehydration of ethyl alcohol with conc. ${
m H_2SO_4}$ at 413 K.

2

21. (a) Give a simple chemical test to distinguish between 3-pentanone and 2-pentanone.

1

(b) Write an equation for Clemmensen reduction.

1

SECTION C

22. For the reaction $A + B \rightarrow Products$, the following initial rates were obtained at various initial concentrations of reactants :

Sl. No.	$[A]/mol L^{-1}$	$[B]/mol\ L^{-1}$	Initial rate/mol L^{-1} s ⁻¹
1	0.1	0.1	0.05
2	0.2	0.1	0.10
3	0.1	0.2	0.05

Determine the order of the reaction with respect to A and B and overall order of the reaction.

23.	(ক)	श्वेता ने	ों दो द्रवों A और B के प्रत्येक के $10 \; mL$ को परस्पर मिलाया। मिलाने पर विलयन	
		का आ	यतन 20·2 mL पाया गया।	
		(i)	द्रवों को मिलाने पर आयतन में परिवर्तन क्यों हुआ ?	1
		(ii)	मिलाने पर ताप बढ़ेगा या घटेगा ?	1
		(iii)	इस प्रकार के विलयन का एक उदाहरण दीजिए।	1
			अथवा	
	(ख)	(i)	पहाड़ी इलाकों में बर्फ से ढकी सड़कों को साफ करने में नमक छिड़कने से किस तरह मदद मिलती है ?	1
		(ii)	क्या होता है जब लाल रुधिर कोशिकाओं को 0·5% (द्रव्यमान/आयतन) सोडियम क्लोराइड विलयन में रखा जाता है ? अपने उत्तर का औचित्य दीजिए।	1
		(iii)	प्रतिलोम परासरण का एक अनुप्रयोग लिखिए।	1
24.	(ক)		कता आबंध सिद्धांत के आधार पर $[\mathrm{NiCl}_4]^{2-}$ की ज्यामिति और चुंबकीय लक्षण की । । कीजिए। [परमाणु क्रमांक : Ni = 28]	2
	(평)	[Co(e	$\mathrm{cn}_{2}\mathrm{Cl}_{2}]^{+}$ के संभावित समावयव बनाइए।	1
25.	(ক)	होगा अ	ाखित में से किसमें जलीय क्षार के साथ अभिक्रिया के उपरान्त विन्यास में प्रतिलोमन गौर क्यों ? क्लोरोप्रोपेन अथवा (ii) 2-क्लोरो-2-मेथिलप्रोपेन	1
	(ख)		ो गई अभिक्रिया में (A) अथवा (B) में से कौन-सा मुख्य उत्पाद होगा ? अपने उत्तर के पयुक्त कारण दीजिए।	2
		CH_3	$- \mathrm{CH_2} - \mathrm{CH(Br)} - \mathrm{CH_3} + $ ऐल्कोहॉली KOH \longrightarrow $\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH} = \mathrm{CH_2} (\mathrm{A}) + \mathrm{CH_3} - \mathrm{CH} = \mathrm{CH} - \mathrm{CH_3} (\mathrm{B})$	

- 23. (a) Shweta mixed two liquids A and B of 10 mL each. After mixing, the volume of the solution was found to be 20·2 mL.
 - (i) Why was there a volume change after mixing the liquids?
 - (ii) Will there be an increase or decrease of temperature after mixing?
 - (iii) Give one example for this type of solution.

OR

- (b) (i) How does sprinkling of salt help in clearing the snow covered roads in hilly areas?
 - (ii) What happens when red blood cells are kept in 0.5% (mass/vol) NaCl solution? Justify your answer.
 - (iii) Write an application of reverse osmosis.
- **24.** (a) Based on Valence Bond Theory, explain the geometry and magnetic character of $[NiCl_4]^{2-}$. [Atomic number : Ni = 28]
 - (b) Draw the possible isomers of $[Co(en)_2Cl_2]^+$.
- **25.** (a) Among the following, which will have inversion of configuration on reaction with aqueous alkali and why?
 - (i) 1-chloropropane OR (ii) 2-chloro-2-methylpropane
 - (b) Which of the following (A) or (B) will be the major product in the reaction given below? Give a suitable reason for your answer.

$$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH(Br)} - \mathrm{CH_3} + \mathrm{alc.} \ \mathrm{KOH} \longrightarrow$$

$$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH} = \mathrm{CH_2} \ (\mathrm{A}) + \mathrm{CH_3} - \mathrm{CH} = \mathrm{CH} - \mathrm{CH_3} \ (\mathrm{B})$$

1

1

1

1

1

1

2

1

1

2

- 26. (क) विलियम्सन संश्लेषण के लिए रासायनिक समीकरण लिखिए।
 - (ख) o-नाइट्रोफ़ीनॉल और p-नाइट्रोफ़ीनॉल को पृथक करने की एक विधि दीजिए। सिम्मिलित सिद्धांत की व्याख्या कीजिए।

2

3

1

2

27. निम्नलिखित अभिक्रिया अनुक्रम में P, Q और R को पहचानिए :

$$\begin{array}{c} P \xrightarrow{NH_3} CH_3COO^-NH_4^+ \xrightarrow{\Delta} Q \\ & PCl_5 \rightarrow R \end{array}$$

- 28. (क) उस विटामिन का नाम लिखिए जिसकी कमी से प्रणाशी रक्ताल्पता (pernicious anaemia) हो जाती है।
 - (ख) गोलिकाकार और रेशेदार प्रोटीन के मध्य कोई दो अंतर लिखिए।

खण्ड घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं। केस को ध्यानपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए।

29. 1893 में वर्नर का उपसहसंयोजन सिद्धांत, उपसहसंयोजन संकुलों में आबंधों की व्याख्या करने के लिए पहला प्रयास था। यह स्मरणीय है कि 1897 में जे.जे. थॉमसन द्वारा इलेक्ट्रॉन की खोज तथा संयोजकता के इलेक्ट्रॉनिक सिद्धांत से पहले ही यह सिद्धांत प्रतिपादित किया गया था। वर्नर के पास कोई भी आधुनिक उपकरणी तकनीक नहीं थी और उसके सभी अध्ययन सामान्य प्रायोगिक तकनीकों द्वारा किए गए थे। वर्नर संकुलों में आबंधन की प्रकृति की व्याख्या करने में समर्थ हुआ और उसने निष्कर्ष निकाला कि संकुलों में धातु दो भिन्न प्रकार की संयोजकताएँ प्रदर्शित करती हैं: प्राथमिक और द्वितीयक। प्राथमिक संयोजकताएँ सामान्य रूप से आयननीय होती हैं जबिक द्वितीयक संयोजकताएँ अन-आयननीय होती हैं।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

- (क) एक मोल ${
 m CrCl_3.4H_2O,\,AgNO_3}$ विलयन के आधिक्य के साथ अभिक्रियित किए जाने पर एक मोल ${
 m AgCl}$ अवक्षेपित करता है। (i) संकुल का संरचनात्मक सूत्र और (ii) ${
 m Cr}$ की द्वितीयक संयोजकता लिखिए।
- (ख) द्वि-लवण और संकुल में क्या अंतर है ?

2

1

- **26.** (a) Write the chemical equation for Williamson's synthesis.
 - (b) Give a method to separate *o*-nitrophenol and *p*-nitrophenol. Explain the principle involved.
 - 2

1

2

1

27. Identify P, Q and R in the following reaction sequence :

$$P \xrightarrow{NH_3} CH_3COO^-NH_4^+ \xrightarrow{\Delta} Q$$

$$PCl_5 \to R$$

- **28.** (a) Name the vitamin whose deficiency causes pernicious anaemia.
 - (b) Write any two differences between globular and fibrous proteins.

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

29. Werner's coordination theory in 1893 was the first attempt to explain the bonding in coordination complexes. It must be remembered that this theory was put forward before the electron had been discovered by J.J. Thomson in 1897, and before the electronic theory of valency. Werner did not have any of the modern instrumental techniques and all his studies were made using simple experimental techniques. Werner was able to explain the nature of bonding in complexes and he concluded that in complexes, the metal shows two different sorts of valency: primary and secondary. Primary valences are normally ionisable whereas secondary valences are non ionisable.

Answer the following questions:

- (a) One mole of CrCl₃. 4H₂O precipitates one mole of AgCl when treated with excess of AgNO₃ solution. Write (i) the structural formula of the complex, and (ii) the secondary valency of Cr.
- (b) What is the difference between a complex and a double salt?

·····

2

1

P.T.O.

निम्नलिखित संकुलों को उनके विलयन में चालकता के बढ़ते हुए क्रम में व्यवस्थित (i) **(ग)** कीजिए: $[Cr(NH_3)_3Cl_3]$, $[Cr(NH_3)_6]Cl_3$, $[Cr(NH_3)_5Cl]Cl_2$ अथवा उपसहसंयोजन यौगिकों की प्राथमिक और द्वितीयक संयोजकताओं के बीच दो अंतर **(ग)** (ii)

1

1

2

1

लिखिए।

कार्बोहाइड्रेट पॉलिहाइड्रॉक्सी ऐल्डिहाइड अथवा कीटोन हैं जो बहुत अधिक संरचनात्मक विविधताओं **30.** को निरूपित करते हैं जिसका कारण है दिक्-स्थान में परमाणुओं की विभिन्न व्यवस्था, फलस्वरूप उनके सैकडों त्रिविम समावयवी बन जाते हैं। यद्यपि अधिकतर त्रिविम समावयवों के रासायनिक गुणधर्म ज्यादा भिन्न नहीं होते, लेकिन उनकी उपापचय की दर और जैविक प्रणालियों में उपयोग महत्त्वपूर्ण रूप से भिन्न होता है तथा वह कार्बोहाइड्रेटों के समग्र उपापचय को प्रभावित करता है। संरचनात्मक रूपभेद, जो त्रिविम आकाश में परमाणुओं की भिन्न व्यवस्था के कारण उत्पन्न होते हैं, त्रिविम समावयव कहलाते हैं। त्रिविम समावयवों की संख्या का अनुमान सैद्धांतिक रूप से 2n सूत्र का उपयोग करके लगाया जा सकता है जहाँ 'n' अणु में उपस्थित त्रिविम केन्द्र अथवा असममित (किरेल) कार्बन परमाणुओं की संख्या है। इन त्रिविम समावयवों में से कुछ संरचनाएँ, जो एक-दूसरे की दर्पण प्रतिबिंब होती हैं. प्रतिबिंब रूप (एनैन्टिओमर) कहलाती हैं।

निम्नलिखित प्रश्नों के उत्तर दीजिए :

- ग्लूकोस में ऐल्डिहाइड समूह और ऋजु श्रृंखला की उपस्थिति दर्शाने के लिए रासायनिक (क) अभिक्रियाएँ दीजिए।
- ऐनोमर को परिभाषित कीजिए। (ख) (i) 1

अथवा

- β-D-ग्लूकोपाइरैनोस की संरचना बनाइए। (ख) (ii)
- सूक्रोस को अपवृत (प्रतीप) शर्करा कहा जाता है। समझाइए। **(ग)** 1

(c) (i) Arrange the following complexes in the increasing order of conductivity of their solution: [Cr(NH₃)₃Cl₃], [Cr(NH₃)₆]Cl₃, [Cr(NH₃)₅Cl]Cl₂

1

1

2

1

1

1

OR

(c) (ii) Write two differences between primary and secondary valences in coordination compounds.

30. Carbohydrates are polyhydroxy aldehydes or ketones that represent enormous structural diversity in terms of the arrangement of atoms in space, resulting in hundreds of stereoisomers. Although the chemical properties of most stereoisomers may not be very different, their metabolic rate and utilization in biological systems is significantly different and known to influence the overall carbohydrate metabolism. Structural variants, which arise due to a different arrangement of atoms in three-dimensional space are known as stereoisomers. The number of stereoisomers can be theoretically estimated by using the formula 2n, where 'n' is the number of stereocenters or asymmetric (chiral) carbon atoms in a molecule. Out of these stereoisomers, there are some structures, which are mirror images of each other, and they are referred to as enantiomers.

Answer the following questions:

- (a) Give chemical reactions to show the presence of an aldehydic group and straight chain in glucose.
- (b) (i) Define anomers.

OR

- (b) (ii) Draw the structure of β -D-Glucopyranose.
- (c) Sucrose is known as invert sugar. Explain.

56/5/2 # 17 # P.T.O.

खण्ड ङ

- **31.** (क) (i) रसायन विज्ञान की प्रायोगिक कक्षा में, शिक्षक ने अपने छात्रों को C_2H_7N आण्विक सूत्र वाला कोई ऐमीन 'X' दिया और छात्रों से कहा कि इस ऐमीन के प्रकार को पहचानिए। छात्रों में से एक छात्रा, नीता ने प्रेक्षित किया कि यह $C_6H_5SO_2Cl$ के साथ अभिक्रिया करके एक यौगिक देता है जो NaOH विलयन में घुल जाता है। क्या आप नीता की इस यौगिक 'X' को पहचानने में सहायता कर सकते हैं ?
 - (ii) निम्नितिखित को उनकी जलीय प्रावस्था में pK_b मान के बढ़ते हुए क्रम में व्यवस्थित कीजिए :

 ${\rm C_6H_5NH_2},\ ({\rm CH_3)_2NH},\ {\rm NH_3},\ {\rm CH_3NH_2},\ ({\rm CH_3)_3NH_2}$

1

1

1

2

1

2

2

- (iii) ऐनिलीन नाइट्रोकरण द्वारा ऑर्थो और पैरा उत्पादों के साथ-साथ यथेष्ट मात्रा में मेटा उत्पाद भी देती है। क्यों ?
- (iv) ऐनिलीन का रूपान्तरण कीजिए:
 - (I) p-ब्रोमोऐनिलीन में
 - (II) फ़ीनॉल में

अथवा

- (ख) (i) अरुण ने एथिलऐमीन और CHCl₃ के मिश्रण को एथेनॉलिक KOH के साथ गर्म किया, जिससे एक दुर्गन्धयुक्त गैस बनी। सम्मिलित रासायनिक समीकरण लिखिए।
 - (ii) निम्नलिखित अभिक्रियाओं में A और B को पहचानिए :

$$\mathbf{A} \xrightarrow{\mathbf{H}_2/\mathbf{Pd}} \qquad \qquad \stackrel{\mathbf{NH}_2}{\longleftarrow} \mathbf{Br}_2/\mathbf{NaOH} \mathbf{B}$$

- (iii) ऐनिलीन का निम्नलिखित में रूपान्तरण कीजिए:
 - (I) बेन्ज़ीन
 - (II) सल्फैनिलिक अम्ल

SECTION E

(i) 31. (a) In a chemistry practical class, the teacher gave his students an amine 'X' having molecular formula C2H7N, and asked the students to identify the type of amine. One of the students, Neeta, observed that it reacts with C₆H₅SO₂Cl, to give a compound which dissolves in NaOH solution. Can you help Neeta to identify the compound 'X'?

1

Arrange the following in the increasing order of their pKb (ii) value in aqueous phase:

1

$${\rm C_6H_5NH_2,\ (CH_3)_2NH,\ NH_3,\ CH_3NH_2,\ (CH_3)_3NH_2}$$

Aniline on nitration gives considerable amount of meta (iii) product along with ortho and para products. Why?

1

(iv) Convert aniline to: 2

- (I)p-bromoaniline
- (II)phenol

OR

(b) (i) Arun heated a mixture of ethylamine and CHCl₃ with ethanolic KOH, which forms a foul smelling gas. Write the chemical equation involved.

1

(ii) Identify A and B in the following reactions:

2

$$\begin{array}{c} \text{A} & \xrightarrow{\text{H}_2/\text{Pd}} & \xrightarrow{\text{NH}_2} & \xrightarrow{\text{Br}_2/\text{NaOH}} \text{B} \end{array}$$

2

Convert aniline to: (iii)

- (I)benzene
- sulphanilic acid (II)

32.	(ক)	(i)	जब पायरोलुसाइट अयस्क को वायु की उपस्थिति में KOH के साथ संगलित किया जाता है तो गाढ़े हरे रंग का उत्पाद 'A' प्राप्त होता है जो अम्लीय माध्यम में बैंगनी रंग के यौगिक 'B' में परिवर्तित हो जाता है।	
			(I) 'A' और 'B' के सूत्र लिखिए।	
			(II) यौगिक 'B' की अम्लीय माध्यम में ${ m Fe}^{2+}$ के साथ अभिक्रिया का आयनिक समीकरण लिखिए।	2
		(ii)	कारण दीजिए :	3
			$ m (I)$ जलीय विलयन में $ m Ce^{4+}$ एक अच्छा ऑक्सीकारक है।	
			(II) लैंथेनॉयड आकुंचन की तुलना में एक तत्त्व से दूसरे तत्त्व के बीच ऐक्टिनॉयड आकुंचन अधिक होता है।	
			(III) $E_{Zn^{2+}/Zn}^{\circ}$ का मान अपेक्षा से अधिक ऋणात्मक है, जबिक $E_{Cu^{2+}/Cu}^{\circ}$ धनात्मक है।	
			अथवा	
	(ख)	(i)	आवर्ती गुणधर्मों का अध्ययन करते समय, आरती ने Hf के परमाणु आकार में एक असामान्य व्यवहार देखा। उसने पाया कि यद्यपि Hf उसी समूह में Zr के ठीक नीचे है, फिर भी उनके परमाणु आकार लगभग समान हैं। (I) ऊपर दिए गए व्यवहार के लिए कौन-सी परिघटना उत्तरदायी है ? उसकी परिभाषा लिखिए।	
			(II) उपर्युक्त परिघटना के किसी अन्य परिणाम का उल्लेख कीजिए।	2
		(ii)	निम्नलिखित के लिए कारण दीजिए :	3
			(I) संक्रमण धातुएँ उत्प्रेरकीय गुणधर्म दर्शाती हैं।	
			(II) संक्रमण धातुओं की कणन एन्थैल्पी उच्च होती है।	

- **32.** (a) (i) When pyrolusite ore is fused with KOH, in presence of air, a dark green coloured product 'A' is obtained which changes to purple coloured compound 'B' in acidic medium.
 - (I) Write the formulae of 'A' and 'B'.
 - (II) Write the ionic equation for the reaction when compound 'B' reacts with Fe²⁺ in acidic medium.

3

2

3

- (ii) Give reasons:
 - (I) Ce⁴⁺ in aqueous solution is a good oxidising agent.
 - (II) The actinoid contraction is greater from element to element than lanthanoid contraction.
 - (III) $E_{Zn^{2+}/Zn}^{\circ}$ value is more negative than expected, whereas $E_{Cu^{2+}/Cu}^{\circ}$ is positive.

OR

- (b) (i) While studying the periodic properties, Arti came across an abnormal behaviour in the atomic size of Hf. She found that, even though Hf is placed below Zr in the same group, both have almost similar atomic sizes.
 - (I) Which phenomenon is responsible for the above behaviour? Define it.
 - (II) Mention any other consequence of the above phenomenon.
 - (ii) Give reasons for the following:
 - (I) Transition metals exhibit catalytic properties.
 - (II) Transition metals have high enthalpy of atomisation.
 - (III) Sc is a transition element, while Zn is not.

56/5/2 # 21 # P.T.O.

- **33.** (क) (i) किसी गैल्वेनी सेल के लिए, निम्निलिखित अर्ध अभिक्रियाएँ दी गई हैं। निर्णय लीजिए कि कौन-सी, अपचयन अभिक्रिया रहेगी और किसका प्रतिलोमन होकर ऑक्सीकरण अभिक्रिया होगी। अपने उत्तर के लिए कारण दीजिए।

2

3

- (I) $Cr^{3+} + 3e^{-} \rightarrow Cr(s)$; $E^{\circ} = -0.74 \text{ V}$
- (II) $Fe^{2+} + 2e^{-} \rightarrow Fe(s)$; $E^{\circ} = -0.44 \text{ V}$
- $\begin{array}{ll} \hbox{(ii)} & \mbox{ उस सेल को निरूपित कीजिए जिसमें निम्निलखित अभिक्रिया होती है :} & \mbox{3} \\ & \mbox{Mg(s)} + 2\mbox{Ag}^+ \, (0 \cdot 001 \ \mbox{M}) \to \mbox{Mg}^{2+} \, (0 \cdot 100 \ \mbox{M}) + 2\mbox{Ag(s)} \\ & \mbox{यदि } E^o_{\mbox{Hem}} = 3 \cdot 17 \ \mbox{V} \ \mbox{है, तो } E_{\mbox{Hem}} & \mbox{ का परिकलन कीजिए | } (\log 10 = 1) \end{array}$

अथवा

- (ख) (i) कोलराउश नियम बताइए। इसके कोई दो अनुप्रयोग दीजिए।
 - (ii) $\wedge_{\mathrm{m}}^{\circ} \mathrm{NH_{4}Cl}, \ \wedge_{\mathrm{m}}^{\circ} \mathrm{NaOH}$ और $\wedge_{\mathrm{m}}^{\circ} \mathrm{NaCl}$ क्रमश: 129·8, 217·4 और $108\cdot9\ \mathrm{S}\ \mathrm{cm}^{2}\ \mathrm{mol}^{-1}\$ हैं $\ |\ 1\times10^{-2}\ \mathrm{M},\ \mathrm{NH_{4}OH}$ विलयन की मोलर चालकता $9\cdot33\ \mathrm{S}\ \mathrm{cm}^{2}\ \mathrm{mol}^{-1}$ है $\ |\$ इस सांद्रता पर $\ \mathrm{NH_{4}OH}$ विलयन की वियोजन मात्रा (α) परिकलित कीजिए $\ |\$

33. (a) (i) For a galvanic cell, the following half reactions are given. Decide, which will remain as reduction reaction and which will be reversed to become an oxidation reaction. Give reason for your answer.

2

3

3

- (I) $Cr^{3+} + 3e^{-} \rightarrow Cr(s); E^{\circ} = -0.74 V$
- (II) $Fe^{2+} + 2e^{-} \rightarrow Fe(s)$; $E^{\circ} = -0.44 \text{ V}$
- (ii) Represent the cell in which the following reaction takes place:

$$\begin{split} Mg(s) + 2Ag^+ & (0\cdot001~M) \rightarrow Mg^{2+} & (0\cdot100~M) + 2Ag(s) \\ Calculate ~ E_{cell} ~ if ~ E_{cell}^{\circ} & = 3\cdot17~V. ~ (log~10=1) \end{split}$$

 \mathbf{OR}

- (b) (i) State Kohlrausch's law. Give any two applications of it. 2
 - (ii) $\wedge_m^\circ NH_4Cl$, $\wedge_m^\circ NaOH$ and $\wedge_m^\circ NaCl$ are 129·8, 217·4, and 108·9 S cm² mol⁻¹ respectively. Molar conductivity of $1\times 10^{-2}\, M$ solution of NH_4OH is 9·33 S cm² mol⁻¹. Calculate the degree of dissociation (α) of NH_4OH solution at this concentration.

Marking Scheme Strictly Confidential

(For Internal and Restricted use only) Senior School Certificate Examination, 2024-25 SUBJECT NAME CHEMISTRY (Theory) -043

(Q.P.CODE 56/5/2) MM: 70

General Instructions: -

You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.

"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."

Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.

The Marking scheme carries only suggested value points for the answers

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.

Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.

If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.

If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "**Extra Question**".

No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

A full scale of marks ______(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.

Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on an answer.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying/not same.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly
 and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)

Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.

Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.

Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.

The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

MARKING SCHEME 2025 CHEMISTRY(Theory)-043

QP Code 56/5/2 MM: 70

Q.No	Value Points	Mark
	SECTION A	
1	(D)	1
2	(D)	1
3	(B)	1
4	(C)	1

		,
5	(B)	1
6	(D)	1
7	(B)	1
8	(C)	1
9	(B)	1
10	(C)	1
11	(D)	1
12	(A)	1
13	(A)	1
14	(A)	1
15	(D)	1
16	(B)	1
47	SECTI(ON B	1/
17	Conductivity decreases with decrease in concentration	1/2
	Due to decrease in number of current carrying ions per unit volume.	1/2
	Molar conductivity increases with decrease in concentration	1/2
10	Due to decrease in inter-ionic attraction or increase in dissociation or increase in number of ions.	1/2
18	$\Delta T_b = iK_b m$	
	$\Delta T_{\rm b} = \mathbf{i} \frac{K_{\rm b} \times 1000 \times w_2}{M_{\rm b} \times w_0}$	1/2
		/2
	i=3	1/2
		/2
	$\Delta T_b = 3 \times 0.52 \times 3 \times 1000$	1/2
	111 x 260	/2
	=0.162K	1/2
	OR	
18	Given $n_X = n_Y$	
	$\chi_X = \chi_V = 0.5$	
	$P_{T} = p_{X}^{0} x_{x+} p_{Y}^{0} x_{Y} / p_{\text{total}} = x_{1} p_{1}^{0} + x_{2} p_{2}^{0}$	1/2
	$= 120 \times 0.5 + 160 \times 0.5$	
	= 120 x 0.3 +100 x 0.3 =60 +80	1
	=140mm Hg	1/2
19	(a)It is the rate of reaction when concentration of a reacting species is taken as unity.	1
19	(b)2 nd order	1
20	H H	
20	(i) $CH_3-CH_2-\overset{\cdots}{O}-H + H^+ \longrightarrow CH_3-CH_2-\overset{\cdots}{O}-H$	1/2
		/2
	(ii) CH CH -0. + CH CH -0. + H CH CH - H C	1/2
	$(11) \operatorname{CH}_{3} \operatorname{CH}_{2} - \operatorname{CH}_{2} - \operatorname{CH}_{2} - \operatorname{CH}_{2} - \operatorname{CH}_{2} + \operatorname{H}_{2} \operatorname{CH}_{3} + \operatorname{H}_{2} \operatorname{CH}_{3}$	/2
	н 🗡	
	(iii) $CH_3CH_2 \stackrel{\circ}{\longrightarrow} + CH_3 \stackrel{\circ}{\longrightarrow} CH_2 \stackrel{\circ}{\longrightarrow} + CH_3CH_2 \stackrel{\circ}{\longrightarrow} - CH_2CH_3 + H_2O$ (iii) $CH_3CH_2 \stackrel{\circ}{\longrightarrow} - CH_2CH_3 \longrightarrow CH_3CH_2 \stackrel{\circ}{\longrightarrow} - CH_2CH_3 + H_2O$	1
	H	
21	(2)	
21	(a) Add NaOH and jeding to both the compounds and heat 2 Pontanene gives vellow ant of	1
	Add NaOH and iodine to both the compounds and heat, 2-Pentanone gives yellow ppt of	1
	iodoform (CHI ₃) whereas 3-Pentanone does not. (Or any other suitable chemical test)	
	(Or any other suitable chemical test)	
	$C = O \xrightarrow{Zn-Hg} CH_2 + H_2O$	1
Ī		

	SECTION C	
22	Rate=k[A] ^x [B] ^y	
	Eq.1 Rate ₁ = $k(0.1)^{x}(0.1)^{y}=5.0 \times 10^{-2}$	
	Eq.2 Rate ₂ = $k(0.2)^{x}(0.1)^{y}=1.0 \times 10^{-1}$	
	Eq.3 Rate ₃ = $k(0.1)^{x}(0.2)^{y}=5.0 \times 10^{-2}$	
	$0.1 k \times 0.2^{x} \times 0.1^{y}$	
	$\frac{1}{0.5} = \frac{1}{k \times 0.1^x \times 0.1^y}$	1
	Hence $x=1$	
	$\frac{0.05}{0.05} = \frac{k \times 0.1^{x} \times 0.2^{y}}{k \times 0.1^{x} \times 0.1^{y}}$	
	Hence y= 0	1
	$Rate=k[A]^{1}[B]^{0}$	
	Overall order=1	1
23	(a)	
	(i) The solution is non ideal, shows positive deviation from Raoult's law / A-B interactions are	1
	weaker than A-A and B-B interactions	
	(ii)Decrease in temperature	1
	(iii) Ethanol and acetone (or any other suitable example)	1
	OR	
23	(b)	
	(i)Salt lowers the freezing point of water and prevents formation of ice and hence its easy to	1
	clean.	
	(ii)-Red blood cells swell up	1/2
	-As the solution is hypotonic, water will flow into the cell/ As the solution is hypotonic,	1/2
	endosmosis occurs.	
	(iii) Desalination of sea water	1
24	$(a)Ni^{2+}$ (3d ⁸).	
	Orbitals of Ni ² 'ion $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow$	
	3d 4s 4p	
	sp^3 hybridised orbitals of Ni^{2*} $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \uparrow$	
	$3d$ sp^3 hybrid	
	[NiCl ₄] ²⁻ (high spin complex) $\uparrow \downarrow \uparrow \downarrow$	
	Four pairs of electrons	
	from 4 CF sp ³ hybridisation, tetrahedral,	1
	Paramagnetic	1/2
	(b) [1/2
		1/2
	cis-form trans-form	
	Optical isomer of Cis-form[Co(en) ₂ Cl ₂] ⁺	
	Г m ¬+ ı Г ~¬+	
	cı cı cı	
		1/2
2.5		
25	(a) (i)1-Chloropropane	1/2
	1°(Primary) alkyl halide / less sterically hindered carbon	1/2
	(b) (D) (CII CII-CIICII as it has greater much on af all of greater that the death is a day	1 1
	(b) (B)/CH ₃ CH=CHCH ₃ , as it has greater number of alkyl groups attached to the doubly bonded	1,1
	carbon atom./ the preferred product is that alkene which has greater number of alkyl groups	
20	attached to the doubly bonded carbon atom / By Saytzeff rule	
26	(a)	

	R−X+ R−ONa dry ether R−O−R+ NaX (C	Or any other correct equation)	1
	(b)Steam distillation o- nitrophenol has intra-molecular H-bonding ar	nd p- nitrophenol has inter-molecular H-bonding/	1
	o- nitrophenol is steam volatile due to intra-modue to inter-molecular H-bonding resulting in as	olecular H-bonding/p-Nitrophenol is less volatile ssociation of its molecules	1
27	P=CH₃COOH		1
	Q=CH ₃ CONH ₂		1
	R=CH ₃ COCl		1
28	(a)Vitamin B ₁₂ (b)		1
	Globular proteins	Fibrous proteins	1x2
	1.Water soluble	1. Insoluble in water	
	2.Spherical shape	2.Fibre-like structure	
		(Or any other two suitable differences)	
	SECT	ION D	
29	(a)		
23	(i) [Cr(H ₂ O) ₄ Cl ₂]Cl		1
	(ii) 6		1
		while complex compounds do not dissociate	1
	completely into ions when dissolved in water. (1
	(c)	of any other suitable unference,	_
	(i) $[Cr(NH_3)_3Cl_3] < [Cr(NH_3)_5Cl]Cl_2 < [Cr(NH_3)_6]Cl_3$		
)R	1
	(c)(ii)		_
	(6)(11)		
	Primary Valency	Secondary Valency	
	1.lonisable	1. Non-ionisable	
	2.Satisfied by negative ions	2. Satisfied by negative ions or neutral	1/2+1/2
		molecules	
		(or any other two suitable differences)	
30	(a)		
	СНО	соон	
	(CHOH) ₄ Br ₂ water	▶ (CHOH)₄	1
	CH_2OH	CH₂ <mark>OH</mark>	
		-	
	СНО		1
	(CHOH) ₄ HI, △ CH ₃ -CH ₂ -CH ₂ -CH ₂ -	-CH ₂ -CH ₃	
	CH OH		
	CH ₂ OH		
	(b)(i)Cyclic structures of glucose differ only in co	onfiguration of -OH group at C ₁ . / Stereoisomers	
	which differ in configuration of -OH group at C ₁		
		OR .	1
	(b)(ii) 6		
	H 15 OH		
	OH H		
	HO $\frac{3}{4}$ $\frac{2}{4}$ $\frac{1}{4}$		
	β - D - (+) - Glucopyranose		1
	p-D-(+) – Glucopyranose		
			1

	(c)Hydrolysis of dextrorotatory sucrose brings a change in the sign of rotation or inverts the	
	optical rotation from dextro to laevo. The product of hydrolysis is invert sugar.	
		1
	SECTION E	
31	(a)(i) Amine 'X' react with $C_6H_5SO_2Cl$ to give a compound ,soluble in NaOH so amine 'X' is primary amine, $CH_3CH_2NH_2$ /Ethanamine/Ethyl amine	1/2 +1/2
	(ii) $(CH_3)_2NH < CH_3NH_2 < (CH_3)_3N < NH_3 < C_6H_5NH_2$ (iii) In the strongly acidic medium, aniline is protonated to anilinium ion, which is meta-directing.	1 1
	(iv)(I) $ \begin{array}{cccccccccccccccccccccccccccccccccc$	1
	$C_6H_5NH_2 + NaNO_2 + 2HCl \xrightarrow{(0-5^{\circ}C)} $	1
	OR	
31	(b)(i)	
	$CH_{3}CH_{2}NH_{2} + CHCI_{3} + 3KOH(EtOH) \longrightarrow C_{2}H_{5}NC + 3KCI + 3H_{2}O$ (ii) A = $B = \bigcup_{C-NH_{2}}^{O-NH_{2}}$ (iii) $C_{6}H_{5}NH_{2} + NaNO_{2} + 2HCI \xrightarrow{(0.5^{\circ}C)} C_{6}H_{5}N_{2} + CI \xrightarrow{CH_{3}CH_{2}OH} C_{6}H_{6}$ (I)	1 1 1
	(II) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1
32	 (a)(i) (I) A - K₂MnO₄ B- KMnO₄ (II) MnO₄⁻+ 5Fe²⁺+ 8H⁺───► Mn²⁺+ 5 Fe³⁺_+ 4H₂O (ii) (I) Gets reduced to +3 common oxidation state. (II) Due to poorer shielding offered by 5f electrons than 4f. (III) Due to completely filled d- subshell (d¹⁰) in zinc whereas in Cu, due to high enthalpy of atomization and low enthalpy of hydration. 	½ +½ 1 1 1 1
	OR	

32	(b)(i)	
	(I) Lanthanoid contraction.	1/2
	The steady decrease in atomic and ionic radii in lanthanoid series.	1/2
	·	
	(II) Decrease in basic character from left to right in lanthanoid series.	1
	(any other correct consequence)	
	(ii)	
	(I)They have the ability to exhibit variable oxidation states/ tendency to form complex	
	compounds/ large surface area.	1
	(II) Due to involvement of (n-1) d and ns electrons which results in strong metallic bond and	
	strong interatomic bonding.	1
	(III) Sc has incompletely filled d orbital (3d1) in its ground state whereas Zn has completely filled	
	d orbital (3d ¹⁰) in ground state as well as in its oxidized state.	1
33	(a)	
	(i) (II) will remain as reduction reaction / (II)	1/2
	(I) will be reversed to become an oxidation reaction	1/2
	Due to low reduction potential of Cr	1
	(ii) Cell representation $Mg(s)/Mg^{2+}$ (aq,0.100M) Ag ⁺ (aq,0.001M)/Ag(s)	1
	n=2	
	$Ecell = E^{\circ}cell - \frac{2.303RT}{nF}log \frac{[Mg^{2+}]}{[Ag^{+}]^{2}}$	
	$\frac{\text{ECH} - \text{E Cell} - \frac{100}{\text{nF}} \log \frac{100}{[\text{Ag}^+]^2}}{1000}$	1/2
	$=3.17 - \frac{0.059}{2} \log \frac{0.100}{(0.001)^2}$	
	$=3.17 - \frac{0.059}{2} \log 10^5$	1
	1	
	$= 3.17 - 0.0295 \times 5$	
	= 3.17 - 0.1475	1/2
	= 3.0225 V or 3.02 V OR	
22	241	1
33	(b)(i)Limiting molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion and cation of the electrolyte.	1
	,	1/2
	To determine -1. Limiting molar conductivity of an electrolyte. 2.Dissociation constant of a weak electrolyte	1/2
	(or any other two suitable applications)	/2
	(or any other two suitable applications)	
	(ii) Λ° mNH4OH = Λ° mNH4Cl + Λ° mNaOH — Λ° mNaCl	1/2
	= 129.8 + 217.4 - 108.9	/2
	$= 129.6 + 217.4 - 108.9$ $= 238.3 \text{ Scm}^2 \text{mol}^{-1}$	1
	$\Lambda m^{\mathcal{C}}$	1/2
	$\alpha = \frac{1}{\Lambda^{\circ}m}$	/2
	$=\frac{9.33}{220.2}$	
	238.3 =0.039 /3.9%	1
	1 0.000 / 5.00%	1

अंकान योजना २०२५

MARKING SCHEME 2025 AHIELA TOMINA (GENERAL) CHEMISTRY (Theory)-043 QP Code 56/5/2

MM: 70

O Nic	QP Code 56/5/2	
Q.No	भूतम् - विद	31.6
	रवार्ड क	
2	(D) (D)	1
3	(B)	11
4	(C)	1
5	(B)	1
6	(D)	1
7	(B)	1
8	(C) .	1
9	(B)	1 1
10	(C)	1
11	(D)	1
12	(A)	1
13	(A)	1
14	(A)	1
15	(D)	1
16	(B)	1
	रवण्ड रव	 -
17	• सांद्रता खरने के साथ जालकता खरते हैं।	1/2
	प्रति इकाई आयतन में विद्युत धारा ले जाने वाले आयनां की सरका बट जाती है।	土
	भंद्रता बटने के साथ जी जर जान बद जाती है अंतर आपनिक आकर्पण कें अभी अमन विभी जान	1
	में वृद्धि अववा आयों की रेम्स्या में वृद्धि के कारण	1/2
18	$\Delta T_b = iK_b m$	-
10		
	$\Delta T_{\rm b} = \mathbf{i} \frac{K_{\rm b} \times 1000 \times w_2}{M_2 \times w_1}$	1/2
	i=3	1/2
	$\Delta T_b = 3 \times 0.52 \times 3 \times 1000$	1/2
	111 x 260 =0.162K	
	अंधवा	1/2
18	n _x = n _y	
	$\chi_{\rm c} = \chi_{\rm c} = 0.5$	
İ	$P_{T} = p_{X}^{0} x_{x+} p_{Y}^{0} x_{Y} / P_{\text{total}} = x_{1} p_{1}^{0} + x_{2} p_{2}^{0}$	1/2
		/2
	= 120 x 0.5 +160 x 0.5 =60 +80	1
	-00 700	-

	=140mm Hg	+	
19	(a) अभिक्रिया वेग अब सभी अभिक्रियकों की साद्रता इकाई है।	1	
	(१) दितीय कारि	j	
20	(i) CH_3 - CH_2 - O - H + H \longrightarrow CH_3 - CH_2 - O - H	1/2	
	(ii) $CH_3CH_2 = \ddot{O}$: $+ CH_3 = CH_2 = \ddot{O} + CH_3CH_2 = \ddot{O} - CH_2CH_3 + H_2O$	1/2	
	(iii) $CH_3CH_2 \xrightarrow{c} CH_2CH_3 \longrightarrow CH_3CH_2-O-CH_2CH_3 + H^{\dagger}$	1	
21	(a) द्वीनां भी जिसे में Na OH और ऑयडीन मिलाकर		
	गरम मरने पर 2-पर्नेनान आपहे। प्राप्त (CHI3) मा पीला अवक्षेप देता है जबीक 3-पेन्टेनान		
	नहीं देता है। (अथवा केर्ड अन्य रासायीनक परीक्षण)		
	(b) $C = O \xrightarrow{Z_D \cdot Hg} CH_2 + H_2O$	1	
	र्वाउँ री		
22	$\begin{aligned} & \text{Eq.1} & = \text{k}[A]^{x}[B]^{y} \\ & \text{Eq.1} & = \text{Joj}_{z} = \text{k}(0.1)^{x}(0.1)^{y} = 5.0 \times 10^{-2} \\ & \text{Eq.2} & = \text{joj}_{z} = \text{k}(0.2)^{x}(0.1)^{y} = 1.0 \times 10^{-1} \\ & \text{Eq.3} & = \text{joj}_{z} = \text{k}(0.1)^{x}(0.2)^{y} = 5.0 \times 10^{-2} \\ & = \frac{k \times 0.2^{x} \times 0.1^{y}}{2} \end{aligned}$		
	$ \frac{0.5}{0.5} = \frac{1}{k \times 0.1^{x} \times 0.1^{y}} $ 31(1): X=1 $ 0.05 = \frac{1}{k \times 0.1^{x} \times 0.2^{y}} $	1	·
	$\frac{1}{0.05} = \frac{1}{k \times 0.1^{x} \times 0.1^{y}}$ 317; $y = 0$	1	
	समग्र कोर्यः ⁼¹	1	
23	(a) (i) विलयन अनादर्श है, राउल्य नियम के न्यानात्मके		
	विपलन दर्शाता है A-A और B-B अन्यो-प्रक्रियाओं की तुलना में A-B अन्यान्य क्रियार दुर्वल है।	1	
	का तुला हा A-B अन्यान्य क्रियारं दुनेल हैं।		·
	(ii) ताप में कमी)	·
	(iii) अभे नाल और रेसीरोन	1	
	(अपवा कोई अन्य उपयुक्त उदाहरण)		·

23 (क) अक्या जल के हिंगाक की कम कर देता है और वर्ष वनने के रोकता है इसिल्स इसे साफ करवा आसान है। (1) • लाल रुधिर के विकास पूजा जाती है • कमों कि विलयन अल्प परासरी है, इसिल्स जल	1 12
थासान है। (11) • लाल रुपिर केरिवाकार फुल जाती है	1 12
(ii) • लाल रुपिर की बिकार प्राती है	1/2
(1) • लाल र्जाबर केर बिनार पूल जाती हैं • ब्योंकि विकास अला परासरी भे उपनित्र न	1/2
क्योंकि विस्तात अल्प परामरी भे उम्मिर न	
10000	
की शिका में प्रवाहित हो जा / क्यों कि विलयन	
अला परासरी है, मण्डा स्मामिस हाती है।	1
(iii) समुद्र जल का विलवणीकरण	,
24 (a)Ni ²⁺ (3d ⁸).	1
$N_{1} = \frac{2}{3} \frac{3}{3} \frac{3}{3} \frac{1}{1} \frac{1}$	
स्वारित के शिक्षे 3d sp ³	
(उच्च प्रयक्षण प्राप्ता प्राप्ता प्राप्ता के सार भुगल	
sp मंकारण १ यदं पा लक्ताय	1 -
अनुसुम्बर्भाम (b) ि । । । । । । । । । । । । । । । । । ।	2
(i) co	1 2
समपस [co(en)2 (1)] में बुवण समावमव	
	1 2
25 (क) एं। - क्लोरो प्रोपन	1/2
16 (प्राथिमका रेजिन है जाइड) काम निवित्र व्यक्ति कार्बन	1 1 2
(b) (B)/043 cH= CH CH3, क्यों कि इसमें दिस आवंधी भार्वन परमाणु में से जुड़े के जिसल समूहों	1+1

Г		
	की संरक्षा आंबेकहें / सेट्जेष (जेटसेफ) नियमें	
26	(a) O	
20	(b) वाज्यीय आस्वन	J
	०- नाइ हो फ़ीनाल में आंतर आंगिर आवंधान है तथा	1
	१-नाइरो फीनाल में अंतराङ्गाण्वक हाइरोजन आवं है।	
	भाष द्वारा बाब्यत होती है / १- नाइहो क्रीनाल	
	क्षांत्र वाष्प्रवील होती है क्योंकि इसमें अंतरा डनाएवक हाइ द्वीजान आवंध विध्यान होता है, जिसके उन्प	
	संबुधित है। जाते हैं।	
27	P=CH ₃ COOH Q=CH ₃ CONH ₂	1
	R=CH ₃ COCl	1
28	(a) Pazing B 12	1
	(b)	1x2
	भोगलिकाकार ब्रोटीन देशेदार फ्रोटीन	
	1. जल में धुलनगील । जल में असूलनगील	
	2. जीलीय आगार 2. देशे की भारत संस्थता	
	2. गालाम आबार् 2. २श का भाग सरचना	
29	(a)	
	(i) [Cr(H ₂ O) ₄ Cl ₂]Cl	1
	(ii) 6	_ ,
	(ii) 6 (b) हिलवण जल में प्रणीयम से साव्यापण आमें में	1
		1

	(ii) (CH ₃) ₂ NH <ch<sub>3NH₂ < (CH₃)₃N < NH₃ <c<sub>6H₅NH₂</c<sub></ch<sub>	
	(111) प्रवल अन्तीम माध्यम के भीनलीन जी द्यानित	1
	होन्य मिनि नियम आया बनाता है जी मेरा	1
	(iv)(1))
	Q	
	NH, H-N-C-CH, H-N-C-CH, NH, (CH,CO), OH or H	1
	\mathbf{Br}	
	(II) $C_6H_5NH_2 + NaNO_2 + 2HCI \xrightarrow{(0-5^{\circ}C)} $	
 		⊥'
32	(b)(i)	
ļ	Δ	1
	CH ₃ CH ₂ NH ₂ + CHCl ₃ + 3KOH(EtOH) — C ₂ H ₅ NC + 3KCl +3H ₂ O	
	(ii)A = NO ₂	1
	$B = \bigcup_{C-NH_2}$	1
	(iii)	
	$C_6H_5NH_2 + NaNO_2 + 2HCI \xrightarrow{(0-5^{\circ}C)} C_6H_5N_2^{\circ}CI \xrightarrow{CH_3CH_2OH} C_6H_6$	
	$C_6H_5N_2 + C_6H_6$ (I) C_6H_6	1
	403	
	(II) +	
	NH, NH, HSO, NH,	
	H,SO, 453-473 K	
	SO ₃ H	
32	(a)(i)	
	(I) $A - K_2MnO_4$ B- $KMnO_4$	5+4
	(II) $MnO_4 + 5Fe^{2+} + 8H^+ \longrightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$	1
İ	(ii) (1) माभान्य आक्सीकारण अवस्था +3 में अपन्यीपत	
	ह्री जाता है।	1
K	ा। 47 की तला में 57 इलेम्स्नी हारा द्वल	
	परिस्माण के कारण।	1
4		
Y	(d') में भारण असित a - मामक (d') में भारण	1
	अविकि Си में इसकी उत्त काणा कन्येली स्व	
	निम्त जलयोजन (हाइड्रेशन) कत्येल्पी के कारण /	
	TO STOUT OF A SALE OF A SALE /	

	3 uaj	
32	(b) (1) तें घेनां घड आकृष्य तें घेनां घड भेजी में परमाणु रूव आयितिक निकाओं में भूमिक इस (11) तें घेनां घड भ्रेजी में बंग्स से दाई और क्षामकीय गुण में असी (अधवा कोई अस परिणाम)	1/2
	(1) इनमें परिवर्त नीम ऑक्सीकरण अवस्थाकों की दर्शाने की समाता का होना / संकुल द्वीरिंगक बनाने की प्रवृत्ति / वह प	1
	(1) अंतरापरभाण्यक व्यात्मिक बंद्यन में जड इलेक्ट्रॉनों के क्षातिप्रक्त (११-1) व बत्तेक्ट्रॉनों के क्षाविक इलेक्ट्रॉनों की आगीदारी के कारण	
33	(11) Sc की ऋल अवस्था में 3 व के बार्क अपूर्ण भिरत होता है अवस्था तम में ही इसका कब्रक पूर्ण भिरत होता है।	1
	(1) उन्हीं होकर ऑक्सीकरण आश्रीक्रिया हो अस्था '(1) उन्हीं होकर ऑक्सीकरण आश्रीक्रिया हो अस्था 'Cr क्या किम्न अपन्ययन विश्व की कारण	1/2
	(й) आभक्रिया का निरुपण :	
	Mg(s)/Mg ²⁺ (aq,0.100M) Ag ⁺ (aq,0.001M)/Ag(s)	1
	$ \begin{array}{ll} $	12
	$= 3.17 - \frac{0.059}{2} \log 10^{5}$ $= 3.17 - 0.0295 \times 5$ $= 3.17 - 0.1475$)

Consideration Co.

	= 3.0225 V or 3.02 V	1/2
	०० भ अथवी ० ० ०	1/2
33		
33		1
	धनायन एवं महणायून के अलग - सूलग योगदान के योग	†
	के बराबर निर्मापत किया जा सकता है।	1
		.,
	1. किसी वैद्युत अपध्य की मीवर चालकाता ज्ञात करने के लिए	1/2
İ		
		1/2
	करेंने के लिए। (अथवा कींड अहम उपयुक्त अनुप्रयोग	
	(ii) Λ° mNH4OH = Λ° mNH4Cl + Λ° mNaOH - Λ° mNaCl	
	= 129.8 + 217.4 - 108.9	1/2
	=238.3 Scm ² mol ⁻¹	
	_{Λm} c	`
	$\alpha = \frac{\Lambda m}{\Lambda^{\circ} m}$	1/2
	$=\frac{9.33}{238.3}$	• •
	=0.039 /3.9%	1

•