

Series: W4YXZ

प्रश्न-पत्र कोड Q.P. Code

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें। Candidates must write the Q.P. Code

on the title page of the answer-book.

क्पया जाँच कर लें कि इस प्रश्न-पत्र में मृद्रित पृष्ठ 23 हैं। (I)

Please check that this question paper contains 23 printed pages.

प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर (II)लिखें ।

Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

(III) कपया जाँच कर लें कि इस प्रश्न-पत्र में 33 प्रश्न हैं। Please check that this question paper contains 33 questions.

(IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथा स्थान पर प्रश्न का क्रमांक अवश्य लिखें।

Please write down the Serial Number of the question in the answer-book at the given place before attempting it.

(V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पर्ढ़ेंगे और इस अवधि के दौरान वे उत्तर-पस्तिका पर कोई उत्तर नहीं लिखेंगे।

15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not

write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे

अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

56/4/3 1 P.T.O.

सामान्य निर्देश :

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में **33** प्रश्न हैं। **सभी** प्रश्न **अनिवार्य** हैं।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **खण्ड क, ख, ग, घ,** एवं **ङ**।
- (iii) खण्ड क प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) खण्ड ख प्रश्न संख्या 17 से 21 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 2 अंकों का है।
- (v) खण्ड ग प्रश्न संख्या 22 से 28 तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 3 अंकों का है।
- (vi) खण्ड घ प्रश्न संख्या 29 तथा 30 केस-आधारित प्रश्न हैं। प्रत्येक प्रश्न 4 अंकों का है।
- (vii) खण्ड ङ प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड क के अतिरिक्त अन्य सभी खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग **वर्जित** है।

खण्ड क

प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के 1 अंक के प्रश्न हैं।

 $16 \times 1 = 16$

1. किसी वैद्युत-रासायनिक सेल में निम्नलिखित अभिक्रिया होती है :

$$\begin{split} &2Cu^{+}(aq)+Zn\left(s\right)\rightarrow2Cu\left(s\right)+Zn^{2+}(aq)\\ &E_{\overrightarrow{H}\overrightarrow{er}}^{\circ}=1\cdot28\;V \end{split}$$

जैसे-जैसे अभिक्रिया आगे बढ़ती है, सेल के समग्र विभव का क्या होगा ?

- (A) विभव स्थिर रहेगा।
- (B) $[Zn^{2+}]$ बढने पर यह घटेगा।
- (C) [Cu⁺] बढ़ने पर यह बढ़ेगा।
- (D) $[Zn^{2+}]$ बढ़ने पर यह बढ़ेगा।
- **2.** Ti^{3+} , Cr^{3+} , Fe^{2+} और Ni^{2+} आयनों में से जलीय विलयन में सर्वाधिक स्थाई आयन है :
 - (A) Ti^{3+}

(B) Cr^{3+}

(C) Fe^{2+}

(D) Ni^{2+}

[परमाणु क्रमांक : Ti = 22, Cr = 24, Fe = 26, Ni = 28]

General Instructions:

Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into **five** sections **Section A**, **B**, **C**, **D** and **E**.
- (iii) Section A questions number 1 to 16 are multiple choice type questions. Each question carries 1 mark.
- (iv) **Section B** questions number **17** to **21** are very short answer type questions. Each question carries **2** marks.
- (v) **Section C** questions number **22** to **28** are short answer type questions. Each question carries **3** marks.
- (vi) **Section D** questions number **29** and **30** are case-based questions. Each question carries **4** marks.
- (vii) **Section E** questions number **31** to **33** are long answer type questions. Each question carries **5** marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the sections except Section A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculator is **not** allowed.

SECTION A

Questions no. 1 to 16 are Multiple Choice type Questions, carrying 1 mark each. $16 \times 1=16$

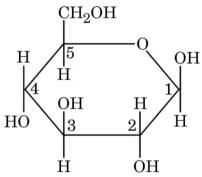
1. In an electrochemical cell, the following reaction takes place :

$$2Cu^{+}(aq) + Zn(s) \rightarrow 2Cu(s) + Zn^{2+}(aq)$$

 $E_{cell}^{\circ} = 1.28 \text{ V}$

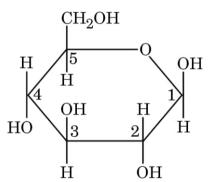
As the reaction progresses, what will happen to the overall voltage of the cell?

- (A) Voltage will remain constant.
- (B) It will decrease as [Zn²⁺] increases.
- (C) It will increase as [Cu⁺] increases.
- (D) It will increase as [Zn²⁺] increases.
- 2. Out of Ti^{3+} , Cr^{3+} , Fe^{2+} and Ni^{2+} ions, the one which is the most stable ion in aqueous solution is:
 - (A) Ti^{3+}


(B) Cr^{3+}

(C) Fe^{2+}

(D) Ni^{2+}


[Atomic number : Ti = 22, Cr = 24, Fe = 26, Ni = 28]

- **3.** हॉफमान ब्रोमामाइड निम्नीकरण अभिक्रिया निम्नलिखित में से किसके द्वारा दी जाती है ?
 - (A) R NO₂
 - (B) $R NH_2$
 - (C) $R CH_2 NH_2$
 - (D) $R CO NH_2$
- 4. हेनरी स्थिरांक K_H का मान होता है :
 - (A) उच्चतर विलेयता वाली गैसों के लिए बृहत्तर
 - (B) निम्नतर विलेयता वाली गैसों के लिए बृहत्तर
 - (C) सभी गैसों के लिए स्थिर
 - (D) गैसों की विलेयता से संबंधित नहीं है
- **5.** निम्निलिखित कार्बोहाइड्रेट की हॉवर्थ संरचना में विभिन्न कार्बन परमाणुओं को संख्यांकित किया गया है। ऐनोमरी कार्बन को किस संख्या से संख्यांकित किया गया है?

- (A) 1
- (B) 2
- (C) 3
- (D) 5
- **6.** निम्नलिखित कथनों में से सही कथन है :
 - (A) La वास्तव में संक्रमण श्रेणी का तत्त्व नहीं है।
 - (B) Zr और Hf की परमाण्विक त्रिज्याएँ लगभग समान होती हैं।
 - (C) लैंथेनॉयड रेडियोसक्रिय होते हैं।
 - (D) La^{3+} से Lu^{3+} तक आयनिक त्रिज्या बढ़ती है।

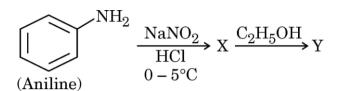
- **3.** Hoffmann Bromamide degradation reaction is given by :
 - (A) $R NO_2$
 - (B) R NH₂
 - (C) $R CH_2 NH_2$
 - (D) $R CO NH_9$
- 4. The value of Henry's constant K_H is:
 - (A) greater for gases with higher solubility
 - (B) greater for gases with lower solubility
 - (C) constant for all gases
 - (D) not related to the solubility of gases
- **5.** In the Haworth structure of the following carbohydrate, various carbon atoms have been numbered. The anomeric carbon is numbered as:

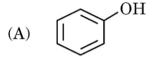
- (A) 1
- (B) 2
- (C) 3
- (D) 5
- **6.** Out of the following statements, the correct statement is:
 - (A) La is actually not an element of transition series.
 - (B) Zr and Hf have almost identical atomic radii.
 - (C) Lanthanoids are radioactive.
 - (D) Ionic radius increases from La^{3+} to Lu^{3+} .

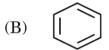
7. नीचे दी गई अभिक्रिया अनुक्रम में, Y की संरचना होगी :

$$NH_2$$
 $NANO_2$ $X \xrightarrow{C_2H_5OH} Y$ $0-5^{\circ}C$

(A) OH


(B)


(C) NO_2


- (D) $N_2^{\dagger}Cl$
- 8. 2-ब्रोमोब्यूटेन, 1-ब्रोमोब्यूटेन, 2-ब्रोमोप्रोपेन और 1-ब्रोमोप्रोपेन में से कौन-सा अणु किरेल प्रकृति का है ?
 - (A) 2-ब्रोमोब्यूटेन
 - (B) 1-ब्रोमोब्यूटेन
 - (C) 2-ब्रोमोप्रोपेन
 - (D) 1-ब्रोमोप्रोपेन
- 9. संक्रमण धातुओं के निम्नलिखित गुणधर्मों में से कौन-सा उन्हें उत्प्रेरक की भाँति व्यवहार करने योग्य बनाता है ?
 - (A) उच्च गलनांक
 - (B) उच्च आयनन एन्थैल्पी
 - (C) मिश्रातु निर्माण
 - (D) परिवर्तनीय ऑक्सीकरण अवस्थाएँ
- **10.** FeO के 1 मोल को Fe_2O_3 में ऑक्सीकृत करने के लिए कितने विद्युत आवेश की आवश्यकता होती है ?
 - (A) 1F
 - $(B) \qquad 2\,F$
 - (C) 3F
 - (D) 4F

7. In the given reaction sequence, the structure of Y would be:

(C)
$$NO_2$$

(D)
$$N_2^{\dagger}Cl$$

- **8.** Out of 2-Bromobutane, 1-Bromobutane, 2-Bromopropane and 1-Bromopropane, the molecule which is chiral in nature is:
 - (A) 2-Bromobutane
 - (B) 1-Bromobutane
 - (C) 2-Bromopropane
 - (D) 1-Bromopropane
- **9.** Which of the following properties of transition metals enables them to behave as catalysts?
 - (A) High melting point
 - (B) High ionisation enthalpy
 - (C) Alloy formation
 - (D) Variable oxidation states
- 10. What amount of electric charge is required for the oxidation of 1 mole of FeO to ${\rm Fe_2O_3}$?
 - (A) 1F
 - (B) 2F
 - (C) 3F
 - (D) 4F

- 11. ऐल्कोहॉलों को सांद्र $m H_2SO_4$ के साथ गर्म करने पर ऐल्कीन बनती हैं। अभिक्रिया का प्रथम चरण है :
 - (A) कार्बोकैटायन का बनना
 - (B) एस्टर का बनना
 - (C) ऐल्कोहॉल अणु का प्रोटॉनीकरण
 - (D) जल का विलोपन
- 12. पॉलिहैलोजन यौगिकों का उद्योगों और कृषि में व्यापक अनुप्रयोग है। DDT भी एक अत्यंत महत्त्वपूर्ण पॉलिहैलोजन यौगिक है। यह है एक :
 - (A) ग्रीनहाउस गैस
 - (B) उर्वरक
 - (C) जैवनिम्नीकरणीय कीटनाशी
 - (D) अजैवनिम्नीकरणीय कीटनाशी

प्रश्न संख्या 13 से 16 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए।

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या **नहीं** करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (D) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।
- 13. अभिकथन (A) : ऐनिलीन की तुलना में ऐसीटेनिलाइड कम क्षारकीय है।

 कारण (R) : ऐनिलीन के ऐसीटिलीकरण के परिणामस्वरूप नाइट्रोजन पर इलेक्ट्रॉन घनत्व घटता
 है।
- 14. अभिकथन (A): क्यूप्रस लवण प्रतिचुम्बकीय होते हैं। कारण (R): क्यूप्रस आयन में पूर्ण भरित 3d-कक्षक होते हैं।
- 15. अभिकथन (A) : n-ब्यूटिल ब्रोमाइड की तुलना में n-ब्यूटिल क्लोराइड का क्वथनांक उच्चतर होता है।
 - कारण (R): C-Br आबंध की तुलना में C-Cl आबंध अधिक ध्रुवीय होता है।
- **16.** अभिकथन (A) : जलीय NaCl का वैद्युत-अपघटन कैथोड पर H_2 और ऐनोड पर Cl_2 देता है। कारण (R) : $\operatorname{H}_2\operatorname{O}$ की अपेक्षा क्लोरीन का ऑक्सीकरण विभव उच्चतर होता है।

- 11. Alkenes are formed by heating alcohols with conc. H₂SO₄. The first step in the reaction is:
 - (A) formation of carbocation
 - (B) formation of ester
 - (C) protonation of alcohol molecule
 - (D) elimination of water
- **12.** Polyhalogen compounds have wide application in industries and agriculture. DDT is also a very important polyhalogen compound. It is a:
 - (A) greenhouse gas
 - (B) fertilizer
 - (C) biodegradable insecticide
 - (D) non-biodegradable insecticide

For Questions number 13 to 16, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- **13.** Assertion (A): Acetanilide is less basic than aniline.
 - Reason(R): Acetylation of aniline results in decrease of electron density on nitrogen.
- **14.** Assertion (A): Cuprous salts are diamagnetic.

Reason(R): Cuprous ion has completely filled 3d-orbitals.

- **15.** Assertion (A): n-Butyl chloride has higher boiling point than n-Butyl bromide.
 - *Reason* (R): C Cl bond is more polar than C Br bond.
- **16.** Assertion (A): Electrolysis of aqueous NaCl gives ${\rm H_2}$ at cathode and ${\rm Cl_2}$ at anode.
 - Reason(R): Chlorine has higher oxidation potential than H_2O .

56/4/3 # 9 # P.T.O.

खण्ड ख

17. आवश्यक ऐमीनो अम्लों से क्या अभिप्राय है ? ऐमीनो अम्ल उभयधर्मी प्रकृति के क्यों होते हैं ?

18. निम्नलिखित अभिक्रियाओं के मुख्य उत्पादों की संरचनाएँ लिखिए :

2

2

$$(\mathfrak{F}) \qquad \begin{matrix} \overset{O}{\underset{}{\bigcup}} \operatorname{CH}_2\operatorname{CH}_2 - \overset{C}{\underset{}{\bigcup}} - \operatorname{O} - \operatorname{CH}_3 \\ \overset{NaBH_4}{\underset{}{\bigcup}} \end{matrix}$$

(평)
$$\begin{array}{c} \operatorname{CH}_3 \\ \mid \\ \operatorname{CH}_3 - \operatorname{C} - \operatorname{OH} + 2\operatorname{Al} \longrightarrow \\ \mid \\ \operatorname{CH}_3 \end{array}$$

19. उस सेल का नाम और परिभाषा लिखिए जिसे अपोलो अंतरिक्ष कार्यक्रम में विद्युत ऊर्जा प्रदान करने के लिए प्रयोग में लाया गया था। इसका एक लाभ भी लिखिए।

2

20. $PdCl_2$. 2KCl, $AgNO_3$ विलयन के साथ AgCl का अवक्षेप नहीं देता है । संकुल का संरचनात्मक सूत्र और IUPAC नाम लिखिए।

2

21. (क) $A_2(g)$ और $B_2(g)$ के बीच अभिक्रिया एक बन्द समतापी पात्र में की गई। अभिक्रिया के लिए वेग नियम पाया गया :

वेग =
$$k[A_2]$$
 [B_2]

ताप को स्थिर रखते हुए यदि अभिक्रिया कोष्ठ में 1 मोल $A_2\left(g\right)$ मिलाई गई, तो अभिक्रिया वेग तथा वेग स्थिरांक में परिवर्तन की प्राग्क्ति कीजिए।

2

अथवा

(ख) किसी अभिकारक 'A' का अपघटन होता है। 'A' की सांद्रता की माप निश्चित अंतराल पर की गई जिसे नीचे दी गई सारणी में अंकित किया गया :

समय/घंटे	[A]/M
0	0.88
1	0.44
2	0.22
3	0.11

ऊपर दिए गए आँकड़ों के आधार पर, अभिक्रिया की कोटि की प्रागुक्ति कीजिए और इसके वेग नियम का व्यंजक लिखिए।

SECTION B

17. What is meant by essential amino acids? Why are amino acids amphoteric in nature?

 $\frac{2}{2}$

2

2

18. Write the structures of the main products of the following reactions :

(a)
$$CH_2CH_2 - C - O - CH_3 \xrightarrow{NaBH_4}$$

$$\begin{array}{c} \operatorname{CH_3} \\ \mid \\ \operatorname{CH_3} - \operatorname{C} - \operatorname{OH} + 2\operatorname{Al} \longrightarrow \\ \mid \\ \operatorname{CH_3} \end{array}$$

19. Name and define the cell which was used for providing electric power in the Apollo space programme. Also write its one advantage.

20. PdCl₂. 2KCl does not give precipitate of AgCl with AgNO₃ solution.
Write the structural formula and IUPAC name of the complex.

21. (a) The reaction between $A_2(g)$ and $B_2(g)$ was carried out in a sealed isothermal container. The rate law for the reaction was found to be:

Rate =
$$k[A_2]$$
 [B₂]

If 1 mole of $A_2(g)$ was added to the reaction chamber and the temperature was kept constant, then predict the change in rate of the reaction and the rate constant.

OR.

(b) Reactant 'A' underwent a decomposition reaction. The concentration of 'A' was measured periodically and recorded in the table given below:

Time/Hours	[A]/M
0	0.88
1	0.44
2	0.22
3	0.11

Based on the above data, predict the order of the reaction and write the expression for the rate law.

No. of Street
- ACC 450 77
-567/C/UII A
1000 PER 100

खण्ड ग

22.	निम्नि	निखत प्रत्येक प्रेक्षण के लिए स्पष्टीकरण दीजिए :	3
	(ক)	$ m Mn^{3+}$ आयन ऑक्सीकारक है जबकि $ m Cr^{2+}$ आयन अपचायक है यद्यपि दोनों का $ m d$ -कक्षक	
		विन्यास (d^4) एक समान है।	
	(ख)	लैंथेनॉयड आकुंचन की तुलना में एक तत्त्व से दूसरे तत्त्व के बीच ऐक्टिनॉयड आकुंचन अधिक होता है।	
	(ग)	H, B, C और N के साथ संक्रमण धातुएँ बहुत अधिक संख्या में अंतराकाशी यौगिक बनाते हैं।	
23.		3O आण्विक सूत्र वाला कोई ऐरोमैटिक यौगिक 'A' धनात्मक 2,4-DNP परीक्षण देता है। यह	
		म हाइपोआयोडाइट के साथ अभिक्रियित किए जाने पर यौगिक 'B' का पीला अवक्षेप देता है।	
		$6'$ A' टॉलेन अथवा फेलिंग अभिकर्मक के साथ अभिक्रिया नहीं करता है; 1 KMnO $_4$ के साथ	
		ऑक्सीकरण पर यह कार्बोक्सिलिक अम्ल 'C' बनाता है। 'A', 'B' और 'C' की संरचनाएँ स्पष्ट ए। उनके IUPAC नाम भी दीजिए।	3
	नगाजर	१ (जन्म १०१ मार्च मा पाजर)	J
24.	पूछे गए	ए अनुसार निम्नलिखित यौगिकों को व्यवस्थित कीजिए :	3
	(क)	${\rm C_2H_5NH_2, (C_2H_5)_2NH, C_6H_5NHCH_3, C_6H_5NH_2}$	
		${ m pK}_{ m b}$ मानों के घटते हुए क्रम में	
	(1ਰ)	C H OH C H NH (CH) NH	

- (ख) ${
 m C_2H_5OH,\, C_2H_5NH_2,\, (CH_3)_2NH}$ क्वथनांक के बढ़ते हुए क्रम में
- (ग) ${
 m C_6H_5NH_2,\,(C_2H_5)_2NH,\,C_2H_5NH_2}$ जल में विलेयता के बढ़ते हुए क्रम में
- 25. (क) निम्नलिखित के लिए कारण दीजिए :
 - (i) n-प्रोपिल क्लोराइड की तुलना में ऐलिल क्लोराइड अधिक तीव्रता से जल-अपघटित होता है।

3

(ii) ऐिल्कल हैलाइडों को जब सिल्वर सायनाइड के साथ अभिक्रियित किया जाता है तब आइसोसायनाइड बनते हैं।

SECTION C

22. Give explanation for each of the following observations:

3

- (a) With the same d-orbital configuration (d^4), Mn^{3+} ion is an oxidising agent whereas Cr^{2+} ion is a reducing agent.
- (b) Actinoid contraction is greater from element to element than that among lanthanoids.
- (c) Transition metals form large number of interstitial compounds with H, B, C and N.
- 23. An aromatic compound 'A' with molecular formula C₈H₈O gives positive 2,4-DNP test. It gives yellow precipitate. of compound 'B' on treatment with sodium hypoiodite. Compound 'A' does not react with Tollen's or Fehling's reagent; on drastic oxidation with KMnO₄ it forms a carboxylic acid 'C'. Elucidate the structures of A, B and C. Also give their IUPAC names.

3

24. Arrange the following compounds as asked:

3

- (a) in decreasing order of pK_b values ${\rm C_2H_5NH_2, (C_2H_5)_2NH, C_6H_5NHCH_3, C_6H_5NH_2}$
- (b) increasing order of boiling point $C_2H_5OH, C_2H_5NH_2, (CH_3)_2NH$
- (c) increasing order of solubility in water $C_6H_5NH_2$, $(C_2H_5)_2NH$, $C_2H_5NH_2$
- **25.** (a) Account for the following:

- (i) Allyl chloride is hydrolysed more readily than n-propyl chloride.
- (ii) Isocyanides are formed when alkyl halides are treated with silver cyanide.

(iii) $S_N 2$ अभिक्रिया में t-ब्यूटिल क्लोराइड की तुलना में मेथिल क्लोराइड $\overline{O}H$ आयन के साथ अधिक शीघ्रता से अभिक्रिया करता है।

अथवा

(ख) 'A' और 'B' के संरचनात्मक सूत्र लिखकर निम्नलिखित अभिक्रियाओं को पूर्ण कीजिए :

3

2

1

3

(i) $CH_3CH = CH_2 \xrightarrow{\text{UTAHISS}} \text{'A'} \xrightarrow{\text{जलीय KOH}} \text{'B'}$

(ii) $CH_3CH_2CHCH_3 \xrightarrow{\quad \text{ऐल्कोहॉलिक KOH} \quad \Delta}$ 'A' $\xrightarrow{\quad HBr \quad \ \ \, }$ 'B' $\subset I$

(iii) 'A' $\stackrel{\text{Mg}}{\longrightarrow}$ $\text{CH}_3\text{CH}_2\text{MgCl} \xrightarrow{\text{H}_2\text{O}}$ 'B' (मुख्य उत्पाद)

26. (क) क्या तृतीयक-ब्यूटिल प्रोपिल ईथर बनाने के लिए सोडियम प्रोपॉक्साइड और तृतीयक-ब्यूटिल क्लोराइड का उपयोग किया जा सकता है ? उचित व्याख्या दीजिए । तृतीयक-ब्यूटिल प्रोपिल ईथर बनाने के लिए आवश्यक उपयुक्त प्रारम्भिक पदार्थों का सुझाव देते हुए अपने उत्तर का औचित्य दीजिए।

(ख) अपर उल्लिखित ईथर का IUPAC नाम दीजिए।

27. NaOH का एक जलीय विलयन बनाया गया और परासरण दाब की माप से 25° C पर इसका मोलर द्रव्यमान $28~{
m g~mol^{-1}}$ पाया गया । इस विलयन में NaOH का प्रतिशत वियोजन परिकलित कीजिए।

[परमाणु द्रव्यमान : Na = 23.0 u, O = 16.0 u, H = 1.0 u]

28. 25° C पर निम्नलिखित अर्ध-सेलों को जोड़कर बने वोल्टीय सेल का सेल विभव परिकलित कीजिए : 3 Al/Al $^{3+}$ (0·002 M) और Ni/Ni $^{2+}$ (0·002 M)

दिया गया है : $E_{Ni^{2+}/Ni}^{o}$ = -0.25~V

$$E_{Al^{3+}/Al}^{o} = -1.66 \text{ V}$$

 $\log 5 = 0.6990$

(iii) Methyl chloride reacts faster with $\bar{\rm OH}$ ion in $\rm S_N 2$ reaction than t-butyl chloride.

OR

(b) Complete the following reactions by writing the structural formulae of 'A' and 'B':

(i) $CH_3CH = CH_2 \xrightarrow{Peroxide} 'A' \xrightarrow{aq. KOH} 'B'$

(ii)
$$CH_3CH_2CHCH_3 \xrightarrow{alc. KOH} `A' \xrightarrow{HBr} `B'$$

 Cl

 $\text{(iii)} \quad \text{`A'} \xrightarrow{\quad Mg \quad} \text{CH}_3 \text{CH}_2 \text{MgCl} \xrightarrow{\quad H_2 \text{O} \quad} \text{`B'}$ (Main product)

26. (a) Can sodium propoxide and t-butyl chloride be used for the preparation of t-butyl propyl ether? Give suitable explanation.

Justify your answer by suggesting the appropriate starting material required for the preparation of t-butyl propyl ether.

(b) Give the IUPAC name of the above mentioned ether. 1

An aqueous solution of NaOH was made and its molar mass from the measurement of osmotic pressure at 25°C was found to be 28 g mol⁻¹.
Calculate the percentage dissociation of NaOH in this solution.
[Atomic mass: Na = 23·0 u, O = 16·0 u, H = 1·0 u]

28. Calculate the cell voltage of the voltaic cell which is set up by joining the following half-cells at 25°C.

 $Al/Al^{3+} \, (0{\cdot}002~M)$ and $Ni/Ni^{2+} \, (0{\cdot}002~M)$

Given:
$$E_{Ni^{2+}/Ni}^{o} = -0.25 \text{ V}$$

 $E_{Al^{3+}/Al}^{o} = -1.66 \text{ V}$
 $\log 5 = 0.6990$

3

2

3

खण्ड घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं। केस को ध्यानपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए।

29. आदर्श विलयन की सामान्यत: स्वीकृत परिभाषा के अनुसार उसी अथवा भिन्न स्पीशीज़ के अणुओं के मध्य समान अन्योन्यक्रिया बल कार्य करते हैं। (यह कथन तुल्य है कि घटकों की सिक्रयता उनकी सांद्रता के बराबर होती है।) सच पूछिए तो यह शर्त मिश्रणों (ध्रुवण समावयव, तत्त्व के समस्थानिक मिश्रणों, हाइड्रोकार्बन मिश्रणों) के लिए केवल अपवादात्मक प्रकरणों में ही पूरी होती है। आदर्श विलयनों के विषय में सीमित प्रकरणों में ही चर्चा की जा सकती है क्योंकि विलायक के संदर्भ में अत्यंत तनु विलयन ही आदर्शत: व्यवहार करते हैं। इस दृष्टिकोण को इस तथ्य से और भी समर्थन मिला कि राउल्ट नियम ने तनु विलयनों में विलायक के व्यवहार का वर्णन करने के लिए आनुभविक रूप से ज्ञात किया तथा पूर्वधारणा के माध्यम से ऊष्मागितकी द्वारा विलायक के आदर्श व्यवहार को निगमित किया जा सकता है।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

(क) मिश्रणीय द्रव युगल का एक उदाहरण दीजिए जो राउल्ट नियम से ऋणात्मक विचलन दर्शाता है। इस विचलन का क्या कारण है?

2

1

1

1

2

1

1

(ख) (i) वाष्पशील अवयवों वाले विलयन के लिए राउल्ट नियम बताइए।

अथवा

- (ख) (ii) राउल्ट का नियम हेनरी के नियम की एक विशेष स्थिति है। टिप्पणी कीजिए।
- (ग) आदर्श विलयन के दो लक्षण लिखिए।

30. राइबोस और 2-डिऑक्सीराइबोस की जीव विज्ञान में महत्त्वपूर्ण भूमिका है। उनके सबसे महत्त्वपूर्ण व्युत्पन्न वे हैं जिनमें फ़ॉस्फ़ेट समूह 5-स्थिति से बँधता है। मोनो-, डाई- और ट्राइ-फ़ॉस्फ़ेट रूप तथा 3-5 चक्रीय मोनोफ़ॉस्फ़ेट महत्त्वपूर्ण हैं। प्यूरीन और पिरिमिडीन, राइबोस तथा डिऑक्सीराइबोस के साथ यौगिकों का एक मुख्य वर्ग बनाते हैं। जब ये प्यूरीन और पिरिमिडीन व्युत्पन्न राइबोस शर्करा के साथ युग्मन करते हैं, तो ये न्यूक्लियोसाइड कहलाते हैं।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

- (क) जब DNA को जल-अपघटित किया जाता है तो क्या उत्पाद बनेंगे ? संरचना के संदर्भ में DNA किस प्रकार RNA से भिन्न है ?
- (ख) न्यूक्लियोटाइड और न्यूक्लियोसाइड में अंतर स्पष्ट कीजिए।
- (ग) (i) न्यूक्लीक अम्ल के दो महत्त्वपूर्ण प्रकार्यों का उल्लेख कीजिए। 1

अथवा

(ग) (ii) दो न्यूक्लियोटाइडों को जोड़ने वाले बंध का नाम बताइए। उस क्षारक का नाम लिखिए जो RNA के न्यूक्लियोटाइड में पाया जाता है लेकिन DNA में नहीं।

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

- 29. According to the generally accepted definition of the ideal solution there are equal interaction forces acting between molecules belonging to the same or different species. (This is equivalent to the statement that the activity of the components equals the concentration.) Strictly speaking, this condition is fulfilled only in exceptional cases for mixtures (optical isomers, isotopic mixtures of an element, hydrocarbon mixtures). It is still usual to talk about ideal solutions as limiting cases in reality since very dilute solutions behave ideally with respect to the solvent. This view is further supported by the fact that Raoult's law empirically found for describing the behaviour of the solvent in dilute solutions can be deduced thermodynamically via the assumption of ideal behaviour of the solvent. Answer the following questions:
 - (a) Give one example of miscible liquid pair which shows negative deviation from Raoult's law. What is the reason for such deviation?

2

1

1

1

2

1

1

1

(b) (i) State Raoult's law for a solution containing volatile components.

OR

- (b) (ii) Raoult's law is a special case of Henry's law. Comment.
- (c) Write two characteristics of an ideal solution.

30. Ribose and 2-deoxyribose have an important role in biology. Among the most important derivatives are those with phosphate groups attached at the 5 position. Mono-, di- and tri-phosphate forms are important, as well as 3-5 cyclic monophosphates. Purines and pyrimidines form an important class of compounds with ribose and deoxyribose. When these purine and pyrimidine derivatives are coupled to a ribose sugar, they are called nucleosides.

Answer the following questions:

- (a) What products would be formed when DNA is hydrolysed? How is DNA different from RNA with reference to a structure?
- (b) Differentiate between nucleotide and nucleoside.
- (c) (i) Mention two important functions of nucleic acid.

OR

(c) (ii) Name the linkage which joins two nucleotides. Name the base that is found in nucleotide of RNA but not in DNA.

56/4/3 # 17 # P.T.O.

खण्ड ङ

31. ((क)	(i)	कारण दीजिए:

- (I) $[Ni(CO)_4]$ प्रतिचुम्बकीय है जबिक $[NiCl_4]^{2-}$ अनुचुम्बकीय है । [[[] []] []] []]] []]] []] []] []] []] []] [[] [] [] [] [[] [] [[] [] [[[] [[] [[] [[[] [[] [[[] [[[] [[[] [[[] [[[]
- (II) NH3 की तुलना में CO एक प्रबल संकुलन कर्मक है।
- (III) संकुल $[\mathrm{Co(en)}_2\mathrm{Cl}_2]^+$ का विपक्ष समावयव ध्रुवण अघूर्णक है । 1

1

1

2

1

1

- (ii) क्रिस्टल क्षेत्र सिद्धांत का उपयोग करते हुए Fe^{3+} के अष्टफलकीय संकुलों में निम्नलिखित की उपस्थिति में अयुगलित इलेक्ट्रॉनों की संख्या लिखिए :
 - (I) प्रबल क्षेत्र लिगन्ड
 - (II) दुर्बल क्षेत्र लिगन्ड [परमाणु क्रमांक : Fe = 26]

अथवा

- (ख) (i) निम्नलिखित यौगिकों द्वारा प्रदर्शित समावयवता के प्रकार का नाम लिखिए। उनके संगत समावयवों का चित्र भी बनाइए।
 - $(I) \qquad [\mathrm{Co(NH_3)_6}] \ [\mathrm{Cr(CN)_6}]$
 - (II) $[Co(en)_3]^{3+}$
 - $(\mathrm{III}) \quad [\mathrm{Co}(\mathrm{NH_3})_3(\mathrm{NO_2})_3]$
 - (ii) दुर्बल क्षेत्र और प्रबल क्षेत्र लिगन्डों के बीच अन्तर स्पष्ट कीजिए। लिगन्ड की प्रबलता किस प्रकार संकुल के प्रचक्रण को प्रभावित करती है ?

SECTION E

- **31.** (a) (i) Give reasons :
 - (I) $[Ni(CO)_4]$ is diamagnetic whereas $[NiCl_4]^{2-}$ is paramagnetic. [Atomic number : Ni = 28]
 - (II) CO is a stronger complexing agent than NH₃.
 - (III) The trans isomer of complex $[\text{Co(en)}_2\text{Cl}_2]^+$ is optically inactive.
 - (ii) Using Crystal Field theory, write the number of unpaired electrons in octahedral complexes of Fe³⁺ in the presence of :
 - (I) Strong field ligand
 - (II) Weak field ligand

 [Atomic number : Fe = 26]

OR

- (b) (i) Name the type of isomerism exhibited by the following compounds. Also draw their corresponding isomers.
 - ${\rm (I)} \qquad {\rm [Co(NH_3)_6]} \ {\rm [Cr(CN)_6]}$

1

1

1

2

(II) $[Co(en)_3]^{3+}$

1

 $(\mathrm{III}) \quad [\mathrm{Co}(\mathrm{NH_3})_3(\mathrm{NO_2})_3]$

1

(ii) Differentiate between weak field and strong field ligands. How does the strength of the ligand influence the spin of the complex?

32. (क) (i) प्रथम कोटि की अभिक्रिया:

$$\mathrm{N_2O_5}\left(\mathrm{g}\right) \to 2\mathrm{NO_2}\left(\mathrm{g}\right) + \frac{1}{2}\,\mathrm{O_2}\left(\mathrm{g}\right)$$

के लिए $m N_2O_5$ की प्रारंभिक सांद्रता $m 1\cdot2 imes10^{-2}~mol~L^{-1}$ थी। m 60 मिनट के पश्चात $m N_2O_5$ की सांद्रता $m 0\cdot2 imes10^{-2}~mol~L^{-1}$ थी। m 318~K पर अभिक्रिया का वेग स्थिरांक परिकलित कीजिए।

 $[\log 6 = 0.778]$

- (ii) निम्नलिखित के लिए कारण दीजिए:
 - (I) हम संतुलित रासायनिक समीकरण के आधार पर किसी अभिक्रिया की कोटि ज्ञात नहीं कर सकते।
 - (II) कोई द्वि-अणुक अभिक्रिया विशिष्ट परिस्थिति में गतिकत: प्रथम कोटि की हो सकती है।

अथवा

- (ख) (i) 298 K से परम ताप में 10 K की वृद्धि के साथ किसी रासायनिक अभिक्रिया का वेग दुगुना हो जाता है। सि्रक्रियण ऊर्जा (E_a) की गणना कीजिए। 3 [$2\cdot303$ R = $19\cdot15$ JK $^{-1}$ mol $^{-1}$, $\log 2 = 0\cdot3$]
 - (ii) अभिक्रिया

$$2\mathrm{H}_2\mathrm{O}_2 \xrightarrow{\hspace*{1em}\mathsf{I}^-\hspace*{1em}} 2\mathrm{H}_2\mathrm{O} + \mathrm{O}_2$$

के लिए प्रस्तावित क्रियाविधि निम्न प्रकार है:

- $(I) \qquad H_2O_2 + I^- \longrightarrow H_2O + IO^-$ (मन्द)
- (II) $H_2O_2 + IO^- \longrightarrow H_2O + I^- + O_2$ (तीव्र)
 - (1) अभिक्रिया के लिए वेग नियम लिखिए।
 - (2) अभिक्रिया की समग्र कोटि एवं आण्विकता लिखिए।

2

3

1

32. (a) (i) The initial concentration of N_2O_5 in the first order reaction :

$$\mathrm{N_2O_5}\left(\mathrm{g}\right) \to 2\mathrm{NO_2}\left(\mathrm{g}\right) + \frac{1}{2}\,\mathrm{O_2}\left(\mathrm{g}\right)$$

was 1.2×10^{-2} mol L⁻¹. The concentration of N₂O₅ after 60 minutes was 0.2×10^{-2} mol L⁻¹. Calculate the rate constant of the reaction at 318 K.

 $[\log 6 = 0.778]$

- (ii) Account for the following:
 - (I) We cannot determine the order of a reaction by taking into consideration the balanced chemical equation.
 - (II) A bimolecular reaction may become kinetically of first order under a specified condition.

 \mathbf{OR}

(b) (i) The rate of the chemical reaction doubles for an increase of 10 K in absolute temperature from 298 K. Calculate activation energy (E_a).

 $[2.303 \text{ R} = 19.15 \text{ JK}^{-1} \text{ mol}^{-1}, \log 2 = 0.3]$

(ii) For a reaction:

$$2\mathrm{H}_2\mathrm{O}_2 \xrightarrow{\hspace*{1em}\mathsf{I}^-\hspace*{1em}} 2\mathrm{H}_2\mathrm{O} + \mathrm{O}_2$$

the proposed mechanism is as given below:

- (I) $H_2O_2 + I^- \longrightarrow H_2O + IO^-$ (slow)
- (II) $H_2O_2 + IO^- \longrightarrow H_2O + I^- + O_2$ (fast)
 - (1) Write rate law for the reaction.
 - (2) Write the overall order and molecularity of the reaction.

2

3

1

1

33. (क) (i) मुख्य उत्पादों की संरचना लिखकर निम्नलिखित अभिक्रियाओं को पूर्ण कीजिए :

(I)
$$\longrightarrow$$
 O $\xrightarrow{\text{H}_2\text{NCONH} - \text{NH}_2}$

1

(II)
$$(CH_3)_2Cd + 2CH_3COCl \longrightarrow$$

1

(III)
$$\longrightarrow$$
 COCl \longrightarrow \longrightarrow Pd - BaSO₄

1

(ii) निम्नलिखित यौगिक युगलों में विभेद करने के लिए सरल रासायनिक परीक्षण दीजिए:

(I) एथिल बेन्ज़ोएट और बेन्ज़ोइक अम्ल

1

(II) प्रोपेनैल और प्रोपेनोन

1

अथवा

(ख) (i) निम्नलिखित प्रत्येक संश्लेषण में छूटे हुए प्रारंभिक पदार्थ, अभिकर्मक अथवा उत्पादों को लिखकर पूर्ण कीजिए :

(I)
$$(i) \quad KMnO_4, KOH \longrightarrow ?$$

1

(II)
$$\longrightarrow$$
 CH₂ $\xrightarrow{?}$ \longrightarrow CHO

1

(III)
$$O$$

$$CHO \xrightarrow{[Ag(NH_3)_2]^+} ?$$

1

(ii) निम्नलिखित रूपान्तरण सम्पन्न कीजिए :

(I) बेन्ज़ैल्डिहाइड से बेन्ज़ोफीनोन

1

(II) बेन्ज़ैल्डिहाइड से 3-फेनिल प्रोपेनॉल

33. (a) (i) Complete the following reactions by writing the structure of the main products:

(I)
$$\longrightarrow$$
 O $\xrightarrow{\text{H}_2\text{NCONH} - \text{NH}_2}$

1

(II) $(CH_3)_2Cd + 2CH_3COC1 \longrightarrow$

1

(III) \longrightarrow COCl \longrightarrow \longrightarrow Pd - BaSO₄

1

- (ii) Give simple chemical test to distinguish between the following pairs of compounds:
 - (I) Ethyl benzoate and benzoic acid

1

(II) Propanal and propanone

1

OR

(b) (i) Complete each synthesis by giving missing starting material, reagent or products:

$$(I) \qquad \overbrace{\hspace{1cm}}^{CH_2CH_3} \xrightarrow{(i) \text{ KMnO}_4, \text{ KOH}} ?$$

1

1

(III)
$$O$$

$$CHO \xrightarrow{[Ag(NH_3)_2]^+} S$$

1

- (ii) Carry out the following conversions:
 - (I) Benzaldehyde to Benzophenone

1

(II) Benzaldehyde to 3-phenyl propanol

Marking Scheme Strictly Confidential

(For Internal and Restricted use only)
Senior School Certificate Examination, 2024-25
SUBJECT NAME CHEMISTRY (Theory) -043

(Q.P.CODE 56/4/3) MM: 70

General Instructions: -

You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.

"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."

Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.

The Marking scheme carries only suggested value points for the answers

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.

Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.

If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.

If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".

No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

A full scale of marks _____(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.

Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on an answer.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying/not same.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)

Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.

Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.

Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.

The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

MARKING SCHEME 2024-25

CHEMISTRY (Theory)- 043

QP CODE 56/4/3 MM: 70

Q.No	Value points	Mark
	SECTION A	
1	(B)	1
2	(B)	1
3	(D)	1
4	(B)	1
5	(A)	1
6	(B)	1
7	(B)	1
8	(A)	1
9	(D)	1
10	(A)	1
11	(C)	1
12	(D)	1
13	(A)	1
14	(A)	1
15	(D)	1
16	(C)	1
	SECTION B	
17	Amino-acids which cannot be synthesized in the body and must be obtained through diet. In zwitter ionic form, amino-acids react both with acids and bases./ Due to the presence of	1
18	both carboxylic group and amino group. (a) OH CHARLES OF CHARLES	1
	(b) $\begin{array}{c} CH_2CH_2 - C - O - CH_3 \\ 0 \\ CH_3 - C - O \\ CH_3 - C - O \\ CH_5 \\ C$	1
19	Hydrogen-Oxygen fuel cell/Fuel cell Converts the energy of combustion of Hydrogen directly into electrical energy. Advantage- High efficiency/Pollution free (or any other one correct advantage)	½ 1 ½
20	K ₂ [PdCl ₄] Potassium tetrachloridopalladate(II)	1
21	Rate of the reaction will increase. Rate constant remains same.	1 1
	OR	
21	Order of the reaction =1 / First Rate =k[A]	1 1
	SECTION C	
22	(a)Change from Mn ³⁺ to Mn ²⁺ results in extra stable half filled d ⁵ configuration. Cr ²⁺ is reducing as its configuration changes from d ⁴ to d ³ which is stable half filled t _{2g} ³	1/2
	configuration. (b)Due to poorer shielding offered by 5f electrons than 4f.	1

	(c)H, B, C and N atoms being small in size get trapped inside the crystal lattices of transition metals.	1
23	A: C ₆ H ₅ COCH ₃ Acetophenone	1/2 , 1/2
	B: CHI ₃ Triiodomethane	1/2, 1/2
	$C: C_6H_5COOH$ Benzoic acid	1/2, 1/2
24	(a) $C_6H_5NH_2 > C_6H_5NHCH_3 > C_2H_5NH_2 > (C_2H_5)_2NH$	1
24	(a) $C_{6}H_{5}NH_{2} > C_{6}H_{5}NH_{2} > C_{2}H_{5}NH_{2} > (C_{2}H_{5})_{2}NH$ (b) $(CH_{3})_{2}NH < C_{2}H_{5}NH_{2} < C_{2}H_{5}OH$	1
		1
25	(c) $C_6H_5NH_2<(C_2H_5)_2NH< C_2H_5NH_2$ a)(i) Greater stability of allylic carbocation due to resonance.	+
25	, , ,	1
	(ii)Being covalent in nature, only nitrogen is free to donate electron pair in AgCN.	1
	(iii)Less sterically hindered carbon in Methyl chloride/ greater steric hinderance on tertiary	
	carbon of t-butyl chloride.	1
	OR	1
25	b)(i) $A = CH_3CH_2CH_2Br$ $B = CH_3CH_2CH_2OH$	½ x
	(ii) $A = CH_3CH = CHCH_3$ $B = CH_3CH_2CH(Br)CH_3$	6=3
	(iii)A = CH_3CH_2CI B= CH_3CH_3	
26.	(a)No	1
	Sodium propoxide is a strong nucleophile as well as a strong base so elimination reaction of t-	
	butyl chloride predominates over substitution.	
	propyl chloride and Sodium.t-butoxide / CH ₃ CH ₂ CH ₂ Cl and (CH ₃) ₃ CONa	1
	(b)2-Propoxy-2-methylpropane	1
27	i=Normal molar mass/Abnormal molar mass	1/2
	i=40/28	
	=1.428	1
	α = i-1/n-1	1/2
	=1.428-1	/2
	- <u>1.428-1</u> 1	
	=0.428 x100	1
20	=42.8 % (Any other suitable method)	1 1
28	$2AI + 3 Ni^{2+} \rightarrow 2AI^{3+} + 3Ni$	1/2
	E° _{cell} =E° _{Ni2+/Ni} - E° _{Al3+/Al} ;E°cell=-0.25-(-1.66)=1.41V	1/2
	n=6	
	$E_{cell} = E^{\circ} cell - \frac{2.303 RT}{2.303 RT} \log \left[A I^{3+} \right]^{2}$	
	nF $[Ni^{2+}]^3$	
	$E_{cell} = 1.41 - 0.059 \log [0.002]^2$	
	$[0.002]^3$	1
	$E_{\text{cell}} = 1.41 - \frac{0.059}{1.000} \log \left[\frac{[2 \times 10^{-3}]^2}{1.000} \right]$	
	$6 [2x10^{-3}]^3$	
	$E_{cell} = 1.41 - 0.059 \log (5x10^2)$	
	6	
	E _{cell} =1.41- <u>0.059 (</u> 2.6990)	
	6	
	E _{cell} =1.41-0.0265	
	E _{cell} = 1.3835 V (Deduct ½ mark for no or incorrect unit)	1
	SECTION D	†
29	(a)Chloroform and Acetone (or Any other correct example)	1
	A-B interactions are stronger than A-A and B-B interaction.	1
	(b)(i) For any solution the partial vapour pressure of each volatile component is directly	1
	proportional to its mole fraction.	
	OR	
	(b)(ii) $p = p^0 x_1, p = K_H x$	
		1

	p α χ for both.		
	(c) The enthalpy of mixing of the pure components in the ideal solution is Zero/ Δ_{mix} H=0. The Volume of mixing of the pure components in the ideal solution is Zero. Δ_{mix} V=0		1/2 + 1/2
	(or any other two suitable characteristics)		72 - 72
30	(a)2-Deoxyribose, Phosphoric acid, Nitrogenous base.		1
	DNA	RNA	-
		e stranded helix	1
		her suitable structural difference)	_
		ner suitable structural difference)	
	(b)	Niveles aide	
	Nucleotide	Nucleoside	1
	1.Pentose sugar+ Nitrogenous base + 1.Pe	ntose sugar+ Nitrogenous base	1
	(c) (i) To preserve genetic information and Protein synthes OR	sis	1
	(c)(ii)Phosphodiester linkage Uracil		1/2 + 1/2
	SECTION E		
31	(a)(i)		
	(I)CO being a strong field ligand, causes pairing of elect electron.	rons therefore, there is no unpaired	1
	Whereas Cl ⁻ is a weak field ligand, does not cause pairing electrons.	ng, therefore presence of unpaired	
	(II) CO can form both sigma (σ) and pi (π)bond with central metal atom/Metal to ligand bonding creates synergic effect between CO and the Metal.		
	(III) Mirror images are superimposable/ Presence of plane of symmetry.		
			1
	OR		
31	(b)(i)		
31	(I)Coordination Isomerism / [Cr(NH ₃) ₆] [Co(CN) ₆]		1/2,1/2
	(II)Optical Isomerism /		1/2, 1/2
	Mirror image		/2 , /2
	3+		
	I-form d-form		
	(III)Geometrical isomerism /		
	NO ₂ NO ₂		
	H_3N Co NO_2 H_3N Co NO_2 NO_2 NO_2		1/2 , 1/2
	NO ₂ NH ₃		
	(ii) Weak field ligands produce weak field and leads to strong field ligands produce strong field leading to larg	•	1

	Strong field ligands cause pairing of electrons/a smaller number of unpaired electrons hence	
	produces low spin complexes and weak field ligands causes no pairing of electrons/ a greater number of unpaired electrons hence produces high spin complexes.	1
32	(a)	
	(i) $k = \frac{2 \cdot 303}{t} \log \frac{[R]_0}{[R]}$	1
	$k = \frac{2.303}{60} \log \frac{1.2 \times 10^{-2}}{0.2 \times 10^{-2}}$	1
	0.2 1.2 1.2	
	$= \frac{2 \cdot 303}{60} \log 6$ $= \frac{2 \cdot 303}{60} \times 0.778$	
	$k= 2.98 \times 10^{-2} \text{ min}^{-1} / 0.0298 \text{ min}^{-1}$ (Deduct ½ mark for incorrect or no unit.)	1
	(I) Order is determined experimentally.	1
	If one of the reactants is taken in excess. OR	1
32	(b)(i)	
	$\log \frac{k_2}{k_1} = \frac{E_a}{2 \cdot 303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$	1
	$\log \frac{2k_1}{k_1} = \frac{E_a}{19 \cdot 15} \left[\frac{1}{298} - \frac{1}{308} \right]$	1
	$0.3 = \frac{E_a}{19.15} \left[\frac{10}{298 \times 308} \right]$	
	$E_{a} = \frac{0.3 \times 19.15 \times 298 \times 308}{10}$	
	E_a = 52729 Jmol ⁻¹ or 52.729 kJmol ⁻¹ (Deduct ½ mark for incorrect or no unit.)	1
	(1). Rate= $k[H_2O_2][I^-]$	1
	(2) Overall order : 2/ Second Molecularity : 2 / Bimolecular	½ ½
33	(a)(i) (l)	1
	NNHCONH ₂	1
	(II) CH₃COCH₃	1
	СНО	
		1
	(ii) (I)Benzoic acid with Sodium bicarbonate gives brisk effervescence. No reaction with Ethyl benzoate	1
	(ii)Propanal, when heated with ammoniacal solution of silver nitrate (Tollens' reagent) gives silver mirror. No reaction with propanone	1
	(or any other suitable chemical test)	
	OR	
33	(b)(i)(l)	1
	(II)1.(BH ₃) ₂ , 2.H ₂ O ₂ /OH ⁻ , 3.PCC	1

(III)

(b)(ii)
(l)

(b)(iii)
(l) $CHO \xrightarrow{(i)K2Cr2O7} CI \xrightarrow{C6H6} CI \xrightarrow{Anhyd.AlCl3} C$

अंकन योजना 2024-25 रसायन विज्ञान (राह्मीनिक)043 प्रथन पत्र कांड 56/4/3

MM: 70

Q.No	मूल्य विन्दू	Mark
	रव०ड के	
1	(B)	1
2	(B)	1
3	(D)	1
4	(B)	1
5	(A)	1
6	(B)	1
7	(B)	1
8	(A)	1
9	(D)	1
10	(A)	1
11	(C)	1
12	(D)	1 1
13	(A)	1
14	(A)	1
15	(D)	1
16	(C)	1
	र्वण्य स्व	
17	वे क्रेमीनो अम्ल जो शरीर में सहस्मेषित नहीं हो सकते	1
	ज़िवटर आयन के कप में ये मेना अन्त, अन्तो रवं भारका दोनों के साथ अभिकिया करते हैं / कार्बी दिसत समूह व	क्रमीना
18	(F)) OH CH2CH2-C-O-CH3	1 AN (0)
	$ \begin{pmatrix} \mathbf{CH}_{5} & \mathbf{CH}_{3} \\ \mathbf{CH}_{5} & \mathbf{C} & \mathbf{O} \\ \mathbf{CH}_{3} & \mathbf{C} & \mathbf{O} \end{pmatrix} $	1
19	हाइब्रोजन - ऑक्सीनन ईधन सेल हाइब्रोजन की दहन ऊर्जा की मीटो विद्युत ऊर्जा में परिवर्तित कर देता है।	1
	लाभ 1. उच्च दक्षता 2. प्रदूषण मुक्त (अथवा की ई अन्य दी सही ०	12×2

20	Ka [PdCl4]	1
	IUPAC ATH	
	पीटीशियम टेट्राक्लारिका पेले डेट (II)	1.
21	अभिक्रिया वेग बढ़ेगा	A
		l
	वेग स्थिशंक अपरिवर्तित बेंखा।	1
		-
21	3124d1	
21	अभिक्रिया की काटि = 1/ प्रथम	
	$\partial \partial I = K[A]$	1
	रवण्ड ग	
22	(क) Mn3+ से Mn2+ में परिवर्तन से अतिरिन्त स्थायी अर्थमित	
	15 A	
	त वन्यास का प्राप्त होना। (१२१ एक उनपन्यायक है नियोक्ति इसकाः विन्यास व से वे में परिवर्तित होता है, जिसमें क्यामी अर्धभरित	1
	132 (N = 2) 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	व म परिवातन हाता है जिसम क्यामा अस्य गरा	
	स्थित स्तर प्राप्त होता है।	*
	्ष्य भ पारवातत होता है। भिश्र स्तर प्राप्त होता है। (ख) 46 की तुलना में 56 इलेक्ट्रानां द्वारा अधिक तुर्वल	'
	पार्ध महा के कारण । १२ ॥ व ८ भ सक्तमण धातर	H
	(म) हाटे आकार बील परमाण जे भीतर संपारित हो जाते हैं	1
23	A: C6H5COCH3	1/2, 1/2
	B: CHI3	½,½ ½,½
24	$C_6H_5NH_2 > C_6H_5NHCH_3 > C_2H_5NH_2 > (C_2H_5)_2NH$	1
	(1a) (CH ₃) ₂ NH< C ₂ H ₅ NH ₂ <c<sub>2H₅OH (3) C₆H₅NH₂<(C₂H₅)₂NH< C₂H₅NH₂</c<sub>	1 1
25	किर्देशियक कार्विकेटामन, अनुनाद के कारण स्थामित्व	1
	प्राप्त करता है।	h
	(ii) महसमांजक प्रकृति होने के कारण AgcN म केवल	
	प्राप्त करता है। (ii) महसमांजिक प्रकृति होने के कारण AgcNमें केवल भाइद्रोजन परमाणु इलेक्ट्रीन मुगल प्रदान कर मलता है	
	(िंं) मोधल क्लोराइड के कार्बन में कम निरावम वाधा	•
	होने के कारण / + - छमोरेत्य क्लोगइड के 3 कार्लन	•
2.1	में अधिक त्रिविम खाधा होने के कारण	

	3/2/01	
25	(\overline{A})(i) A = CH ₃ CH ₂ CH ₂ Br B = CH ₃ CH ₂ CH ₂ OH (ii) A = CH ₃ CH=CHCH ₃ B= CH ₃ CH ₂ CH(Br)CH ₃ (iii) A = CH ₃ CH ₂ Cl B= CH ₃ CH ₃	½ x 6=3
26.	(क) महीं	1/2
	सोडियम् प्रोपोक्साइड एक प्रबल नाभिकरागी रंग प्रवल क्षारक है, अतः विलोपन, प्रतिस्घापन से अध्यक प्रबलतर होता है।	1/2
	प्रोपाइल क्लोबाइड स्वं सोडियम तृतीयक ब्यूटाक साइड) ८ H3CH2CH2Cl and (CH3)3CONa (सव) २- प्रोपोक्सी -2- मिथल प्रोपेन	1
27	ा=ः सामान्यः मोलर् द्रे <u>०यमा</u> न	1/2
	i=40/28 3/21 1/24 1/04 5 4/11/29 =1.428 α=i-1/n-1	1 1/2
	= <u>1.428-1</u> 1	
	1 =0.428 x100 =42.8% (इकाई गलत या ना देने पर 1 संक काट दें।)	1
28	2Al + 3 Ni ²⁺ → 2Al ³⁺ + 3Ni	1/2
	E° _{cell} =E° _{Ni2+/Ni} - E° _{Al3+/Al} ;E°cell=-0.25-(-1.66)=1.41V n=6	1/2
	E _{cell} =E°cell- <u>2.303RT log [Al³⁺]²</u>	
	nF $[Ni^{2+}]^3$ $E_{cell} = 1.41 - 0.059 \log [0.002]^2$,
	6 [0.002] ³	1
	$E_{\text{cell}} = 1.41 - \frac{0.059}{6} \log \left[\frac{2 \times 10^{-3}}{3} \right]^{2}$ $= \left[\frac{2 \times 10^{-3}}{3} \right]^{3}$	
	$E_{\text{cell}} = 1.41 - 0.059 \log (5 \times 10^2)$	
	6 E _{cell} = 1.41- <u>0.059 (</u> 2.6990)	
	6	
	Ecell = 1.41-0.0265 Ecell = 1.3835 V (इकाई गलत मा ना देने प्र 4 अंक काट दें।)	1
29	(क) क्लोबोफार्म सूर्व रेसीटीन (अथवा कोई और सहीउदाहरू)	1
23	A-A व ६-६ के बीच अंतरासाणिवक आर्क पण की	
	तुलना में A-B के बीच झंतराआणिवक आक्रेषण के	1
	प्रवस्तर होने के कारण	
	(ख)(i) वापपशील द्वों के विलयन में प्रत्येक अवयव	
	का आंश्रिक पान विलयन में उसके माल अंश के	

	1 3 9		•
	ममानुपाती होता है। अथवा		
		1	
	で=kH pxx (引引 の 配記)		
	मा क्रिक्ट (दाना का लाव क्रवचातां को मिन्नित	1	
(ग) आदश विलयन वनान कालए गुर्ध अपयुर्ध आन्य हैला	-	
	ग) आदर्श विलयन वनाने के लिए शुद्ध अवयवां को मिष्टित करने पर मिश्रग वनाने का रेथेल्पी परिवर्तन शुन्य होता		
	है। किसान में = 0	生+ 生	٠
	आवर्श विलयन बनाने के लिए शह अपनेपा जा मा	可對人	V=0
30	हैं। / क्रिंग्ण में = 0 आवर्श विलयन बनाने के लिए शह अवयवां की मित्रित करने पर मित्रूण कर्नाने का आयतन परिवर्तन श्रून्य है की १- डिऑक्सीशइबीस, फ़ाहफ़ोरिक अम्ल, नाइट्रीजन युक्त	1	14401
,	क्षांच्या		
	DNA RNA		
	द्वि रज्जुक कुंडली स्क रज्जुक कुंडली	1	
	(अथवा अन्म कोर्ड संश्चारम्		
	अंतर)		
	(रव)		
	न्यू विलंभीटाइड न्यू विलंभाशाइड		
	पेन्टोस शाकीरा + नाइद्रीजन पेन्टोस शर्करा + नाइद्रीजन	4	
	यस्त भारक + फाल्फिट यस्त भारक	1	
2	(ग) आनुवांशिक सूचनाओं की संग्रहित करना एवं प्रोटीन संश्लेषण	1	
	(1) डाजिसिक्स में बेराया	1	
	(क्ष)(11) फारफाडाइस्स्टर वंदान	12+5	
	्र २००५ व.	, ,	
31	कि)। 100 सक प्रवल शेंत्र लिगन्ड होन् के कीरिंग इलान्स	JP(1	
	को मुगमन के लिए बार्धि कर देता है, अत्रव काड	1	
	उत्तमुगतित इलेक्ट्रान मही होती है।		
	जबिक ८ एक द्वल दोत्र लिगन्ड हान ते.		
	इलेक्ट्रांना को यमन के लिए वाष्य नहीं कर पाता		
	म्रासल कारा दिए क्रक प्रवल क्षेत्र लिगन्ड होने के कारण इतोन्हें को मुग्मन के लिए बार्ड्स कर देता है, सतस्व कार्ड अमुगतित इलक्ट्रान नहीं होता है। जबकि प्रश्व दुर्वल क्षेत्र लिगन्ड होने के कारण इलेक्ट्राना को मुग्मन के लिए बार्ड्स नहीं कर पाता है, अतस्व अमुगलित इलेक्ट्रान होते हैं।		
	क्षे ट्रेट धातु के साथ - आवंध प्रवं त आवंध वनाता है	· J	
4	ण ८० धातु के साच + अविध २१ / अविध प्रशास ए	· mala	30400

भारत के साथ न आवंध रवं तर आवंध किनाता है। धातु से लिगन्ड का आवंध एक सहित्रपाशीलता का प्रभाव उत्पन्न करता है।

(भा) वर्पन प्रतिविव रूप अहमारापित होते हैं। समीमित 1 तल की उपस्थित गल की उपस्थित (I) $\Delta \circ > \ell$ बलेक्ट्रॉन का युग्मन कर तेता है अतः स्क अमुगलित बलेक्ट्रॉन है/ (I) $\Delta \circ < \ell$ बलेक्ट्रॉन का युग्मन नहीं कर पाता है अतः 5 अयुगलित बलेक्ट्रानों का युग्मन नहीं कर पाता है अतः 5 अयुगलित बलेक्ट्रानों का 31 (N) हेप सहसंभी जन समावयवता / [cr(NH3)6] [co((N)6] 1/2,1/2 1/2,1/2 (11) ध्रुवण समावयवता 1/2, 1/2 (111) ज्यामितीय स्नमाव्यवता (11) दुर्बल क्षेत्र बिगन्ड दुर्बल क्षेत्र उत्पन्न करते हैं। जिसके कारण वे कक्षकों का विपाटन कम होता है। जबकि प्रबल क्षेत्र लिग्न्ड प्रवल क्षेत्र उत्पन्न करते हैं। जिसके कार्ण d क सकों का विपाटन अधिक होता है। प्रवल क्षेत्र लिगन्ड इले+हॉनों का युग्मन कर देते हैं। अमुगलित इलेन्ह्रांनी की कम स्त्रेंग्या हाने के कार्ण विन्न प्रचक्रग मंक्त भीगिक क्रमते हैं जलकि वुर्वल क्षेत्र लिगन्ड इलक्ट्रामां का युग्मन नहीं कर । पाते / अभुगलित इलक्ट्रामां की अध्यक संख्या होने के कारण 'उच्च प्रन्यक्रण मंक्त मीविक कार्री है

-	1/4)	
32	(i)	4.4
	$k = \frac{2 \cdot 303}{t} \log \frac{[R]_0}{[R]}$	1
	$k = \frac{2.303}{60} \log \frac{1.2 \times 10^{-2}}{0.2 \times 10^{-2}}$	1
		1
	$=\frac{2\cdot303}{60}\log 6$	
	= \frac{2.303}{60} \times 0.778	()
	=\frac{2.303}{60} \times 0.778 k= 2.98 \times 10 ⁻² min ⁻¹ / 0.0298 min ⁻¹ (san & and All File of A	1
	(म) कीट प्रामागिक ऋप से निर्धारित की जाती है।	1
	(11) मीद किसी सक अभिकारक की बहुत अध्यक	1
	मात्रा में लिया जाए/	1
	अथव)	
32 \$		
	$\log \frac{k_2}{k_1} = \frac{E_a}{2 \cdot 303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$	1
	$\log^{2k_1} - \frac{E_a}{1} \left[\frac{1}{1} - \frac{1}{1} \right]$	
	$\log \frac{2k_1}{k_1} = \frac{E_a}{19 \cdot 15} \left[\frac{1}{298} - \frac{1}{308} \right]$	1
	$0.3 = \frac{E_a}{19.15} \left[\frac{10}{298 \times 308} \right]$	
	$E_{a} = \frac{0.3 \times 19.15 \times 298 \times 308}{10}$	١,
	E _a = 52729 Jmol ⁻¹ or 52.729 kJmol ⁻¹ (ans गलत मा ना देने 맛 날 अंक ज	
	(11)	
	(I) an = k[H202][I]	1
	ए कोटि: 2/ हितीम	
	2 sinc , 2/ 18a14	1-2
	माण्विकता। 2/ द्वि - मणुक	上
		2
33	新 (i) (i)	1
	NNHCONH ₂	_
	(II) CH₃COCH₃	1
	СНО	1
		, ,
	(III) विन्ज़ीडक अम्ल सीडियम हाइड्राजनका लिनेट के साथ जीभक्रिया करके तेज खुदबुदाहट उत्पन्न करता है। शिथल बेन्ज़ीस्ट के साथ कोई अभिक्रिया नहीं होती है।	1
	(11) वन्जाडक ठाम्ल लाडमन टाइनाजा है।	1
	अभिक्रिया करके तेज भुद्रभुद्रिट उत्पन्न वार्ति है।	1
	रिधल केन्ज़िएट के साध कोई सीभिक्रिया नहीं होती है।	
	(11) प्रोपेनेल अमीनिमामम सिल्वर नाइट्रेट विलम्न (टॉलेन	
	अभिकर्मक) के साथ गर्म करने पर सिल्वर दर्पन ननाता	
	जानवामका के लाय ग्रेम करने पर सिल्पर पेनेण लिगाता	
6 I P	कहीं प्रोपनोन कोई अभिक्रिया नहीं करता है।	

(अथवा अन्य कोर्ड सीमिक्रमा नहीं करता है। (अथवा अन्य कोर्ड रसामिक परीक्षण)

Γ		·····
		,
		-
	भग ाः	
33	(49)(i)(l)	
33	COOH	1
	(II)1.(BH ₃) ₂ , 2.H ₂ O ₂ /OH ⁻ , 3.PCC	1
	(III)	_
		_
		1
	√ coo.	
	t Mil)	
	(' ')(ii) (1)	
	0 0	1
	CHO (i)K2Cr2O7 Cc Cd C6H6	_
	(ii) SOC12 Anhyd .AICls	
	(II) C ₆ H ₅ CHO CH ₃ CHO, dil NaOH ,Δ C ₆ H ₅ CH=CHCHO H ₂ /Ni C ₆ H ₅ CH ₂ CH ₂ CH ₂ CH ₂ OH	1
	A C A C A C A C A C A C A C A C A C A C	-1
	(अथवा कोई अन्म उपमुग्त विधि	" /