

Series: W2YXZ

SET ~ 3

रोल नं.

प्रश्न-पत्र कोड 56/2/3 Q.P. Code

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

नोट / NOTE

- (I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं।
 - Please check that this question paper contains 23 printed pages.
- ${
 m (II)}$ कृपया जाँच कर लें कि इस प्रश्न–पत्र में ${f 33}$ प्रश्न हैं ।
 - Please check that this question paper contains 33 questions.
- (III) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें। Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- $({
 m IV})$ कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथा स्थान पर प्रश्न का क्रमांक अवश्य लिखें ।

Please write down the serial number of the question in the answerbook at the given place before attempting it.

- (V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
 - 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धांतिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे

Time allowed : 3 hours

अधिकतम अंक : 70

Maximum Marks : **70**

P.T.O.

56/2/3

731-3

सामान्य निर्देश:

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए:

- (i) इस प्रश्नपत्र में 33 प्रश्न हैं। **सभी** प्रश्न अनिवार्य हैं।
- (ii) यह प्रश्नपत्र **पाँच** खण्डों में विभाजित है खण्ड **क**, **ख, ग, घ** तथा **ङ**।
- (iii) **खण्ड क –** प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) **खण्ड ख -** प्रश्न संख्या 17 से 21 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 2 अंकों का है ।
- (v) **खण्ड ग –** प्रश्न संख्या 22 से 28 तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 3 अंकों का है।
- (vi) **खण्ड घ –** प्रश्न संख्या **29** तथा **30** प्रकरण आधारित प्रश्न हैं। प्रत्येक प्रश्न **4** अंकों का है।
- (vii) **खण्ड ङ –** प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड **क** के अतिरिक्त अन्य सभी खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग वर्जित है।

जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानोंका उपयोग कर सकते हैं :

$$c = 3 \times 10^8 \text{ m/s}$$

$$h = 6.63 \times 10^{-34} \text{ Js}$$

$$e = 1.6 \times 10^{-19} C$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$$

$$\epsilon_0 = 8.854 \times 10^{-12}~\mathrm{C^2~N^{-1}~m^{-2}}$$

$$\frac{1}{4\pi\epsilon_0} = 9\times 10^9~N~m^2~C^{-2}$$

इलेक्ट्रॉन का द्रव्यमान (m_e) = 9.1×10^{-31} kg.

न्यूट्रॉन का द्रव्यमान =
$$1.675 \times 10^{-27} \text{ kg}$$
.

प्रोटॉन का द्रव्यमान =
$$1.673 \times 10^{-27} \text{ kg}$$
.

आवोगाद्रो संख्या =
$$6.023 \times 10^{23}$$
 प्रति ग्राम मोल

बोल्ट्ज़मान नियतांक =
$$1.38 \times 10^{-23} \, \mathrm{JK^{-1}}$$

General Instructions:

Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into FIVE sections Section A, B, C, D and E.
- (iii) **Section A** questions number 1 to 16 are multiple choice type questions. Each question carries 1 mark.
- (iv) Section B questions number 17 to 21 are very short answer type questions. Each question carries 2 marks.
- (v) **Section** C questions number **22** to **28** are short answer type questions. Each question carries **3** marks.
- (vi) Section D questions number 29 and 30 are case-based questions. Each question carries 4 marks.
- (vii) Section E questions number 31 to 33 are long answer type questions. Each question carries 5 marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the sections except Section -A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculator is NOT allowed.

You may use the following values of physical constants wherever necessary:

$$c = 3 \times 10^8 \text{ m/s}$$

$$h = 6.63 \times 10^{-34} \text{ Js}$$

$$e = 1.6 \times 10^{-19} C$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$$

$$\varepsilon_0 = 8.854 \times 10^{-12} \ \mathrm{C^2 \ N^{-1} \ m^{-2}}$$

$$\frac{1}{4\pi\epsilon_0}$$
 = 9 × 10⁹ N m² C⁻²

Mass of electron (m_e) = 9.1×10^{-31} kg.

Mass of neutron = 1.675×10^{-27} kg.

Mass of proton = 1.673×10^{-27} kg.

Avogadro's number = 6.023×10^{23} per gram mole

Boltzmann's constant = $1.38 \times 10^{-23} \,\mathrm{JK^{-1}}$

 $\sim 3 \sim P.T.O.$

खण्ड – क

 $16 \times 1 = 16$

प्रश्न स	तंख्या 1	f l से $f 16$ तक बहुविकल्पीय प्रकार के $f 1$ अंक के	5 प्रश्न है	<u> </u>
1.	निम्न	लेखित में से कौन सा कथन गलत है ?		
	(A)	शून्य कोटि अभिक्रिया वेग अभिकारक की प्रा	रंभिक र	मांद्रता से स्वतंत्र होता है ।
	(B)	शून्य कोटि अभिक्रिया की अर्द्ध-आयु, वेग नि	स्थिरांक	के व्युत्क्रमानुपाती होती है।
	(C)	किसी अभिक्रिया की आण्विकता शून्य हो सव	कती है	l
	(D)	प्रथम कोटि अभिक्रिया के लिए $\mathbf{t}_{1/2} = 0.69$	93/k	
2.	1 मो	ल ${ m MnO}_4^-$ को ${ m MnO}_2$ में अपचयित करने के	5 लिए 3	आवश्यक आवेश है
	(A)	1 F	(B)	3 F
	(C)	5 F	(D)	6 F
3.	[Ar]	$3\mathrm{d}^{10}4\mathrm{s}^1$ इलेक्ट्रॉनिक विन्यास वाला तत्व है		
	(A)	Cu	(B)	Zn
	(C)	Cr	(D)	Mn
4.	अणुउ	मों की संख्या जो किसी प्राथमिक अभिक्रिया में	परस्पर	अभिक्रिया करते हैं, एक माप होती है
	(A)	अभिक्रिया की सक्रियण ऊर्जा की	(B)	अभिक्रिया की स्टॉइकियोमेट्री की
	(C)	अभिक्रिया की आण्विकता की	(D)	अभिक्रिया की कोटि की
5.	प्रतिचु	बिकीय स्पीशीज़ है		
	(A)	$[Ni(CN)_4]^{2-}$	(B)	$[\mathrm{NiC}l_4]^{2-}$
	(C)	$[\mathrm{Fe(CN)}_6]^{3-}$	(D)	$[{ m CoF}_{6}]^{3-}$
	[परम	ाणु संख्या : Co = 27, Fe = 26, Ni = 28	3]	
6.	संकुल	न आयन [Co(NH ₃) ₅ (NO ₂)] ²⁺ तथा [Co((NH ₃)	$_{5}(\mathrm{ONO})]^{2+}$ कहलाते हैं
		आयनन समावयवी	(B)	

56/2/3

(C) उपसहसंयोजन समावयवी

(D) ज्यामितीय समावयवी

SECTION - A

 $16 \times 1 = 16$

Question No. 1 to 16 are Multiple Choice type questions carrying 1 mark each.

- 1. Which among the following is a false statement?
 - (A) Rate of zero order reaction is independent of initial concentration of reactant.
 - (B) Half-life of a zero order reaction is inversely proportional to the rate constant.
 - (C) Molecularity of a reaction may be zero.
 - (D) For a first order reaction, $t_{1/2} = 0.693/k$.
- 2. The charge required for the reduction of 1 mol of MnO_4^- to MnO_2 is
 - (A) 1 F

(B) 3 F

(C) 5 F

- (D) 6 F
- 3. The element having [Ar]3d¹⁰4s¹ electronic configuration is
 - (A) Cu

(B) Zn

(C) Cr

- (D) Mn
- 4. The number of molecules that react with each other in an elementary reaction is a measure of the :
 - (A) activation energy of the reaction (B) stoichiometry of the reaction
 - (C) molecularity of the reaction
- (D) order of the reaction
- 5. The diamagnetic species is:
 - (A) $[Ni(CN)_4]^{2-}$

(B) $[NiCl_4]^{2-}$

(C) $[Fe(CN)_6]^{3-}$

(D) $[CoF_6]^{3-}$

[At. No. Co = 27, Fe = 26, Ni = 28]

- 6. The complex ions $[Co(NH_3)_5 (NO_2)]^{2+}$ and $[Co(NH_3)_5 (ONO)]^{2+}$ are called
 - (A) Ionization isomers

(B) Linkage isomers

(C) Co-ordination isomers

(D) Geometrical isomers

7.	द्वितीय बनेगा		ड (CrO ₃) वे	ह साथ ऑक्सीकरण अभिक्रिया के बाद क्या
	(A)	! एल्डिहाइड	(B)	कीटोन
	(C)	कार्बोक्सिलिक अम्ल	(D)	एस्टर
8.	निम्नि	लेखित के लिए कौन सा सही IUPAC	नाम है ?	
			$^{\mathrm{CH}_3}$	
		20 22 22	Cl	
	` /	मेथिलक्लोरोबेंज़ीन	(B)	टॉल्यूईन
	(C)	1–क्लोरो–4–मेथिलबेंज्ञीन	(D)	1—मेथिल—4—क्लोरोबेंज़ीन
9.	निम्नि	लेखित में से कौन सा/से प्रोटीन के विकृ	तीकरण का उत	सहरण है/हैं ?
	(A)	अंडे की सफेदी का स्कंदन	(B)	दही का जमना
	(C)	रक्त का थक्का बनना	(D)	(A) और (B) दोनों
10.	फीनॉ	न का सैलिसिलिक अम्ल में रूपांतरण नि	म्न में से किस	के द्वारा किया जा सकता है ?
	(A)	राइमर-टीमन अभिक्रिया	(B)	फ़्रीडेल-क्राफ्ट्स अभिक्रिया
	(C)	कोल्बे अभिक्रिया	(D)	युग्मन अभिक्रिया
11.	स्कर्वी	रोग किसकी कमी के कारण होता है ?		
	(A)	विटामिन B1	(B)	विटामिन B2
	(C)	ऐस्कॉर्बिक अम्ल	(D)	ग्लूटामिक अम्ल
12.	न्यूक्ति	नयोटाइड आपस में किस बंध द्वारा जुड़े ह	प्रोते हैं ?	
	(A)	ग्लाइकोसाइडी बंध	(B)	पेप्टाइड बंध
	(C)	हाइड्रोजन आबंध	(D)	फॉस्फोडाइएस्टर बंध
		,		······
56/2	/3	ı	~ 6 ~	

7.		at will be formed after oxidation omic anhydride (CrO ₃)?	n rea	ction of secondary alcohol with
	(A)	Aldehyde	(B)	Ketone
	(C)	Carboxylic acid	(D)	Ester
8.	Whi	ch is the correct IUPAC name fo Cl		
		CI		
	(A)	Methylchlorobenzene	(B)	Toluene
	(C)	1–Chloro–4–Methylbenzene	(D)	1–Methyl–4–Chlorobenzene
9.	Whi	ch of the following is/are examp	les of d	lenaturation of protein ?
	(A)	Coagulation of egg white	(B)	Curdling of milk
	(C)	Clotting of blood	(D)	Both (A) and (B)
10.	The	conversion of phenol to salicylic	acid c	an be accomplished by
	(A)	Reimer-Tiemann reaction	(B)	Friedel-Crafts reaction
	(C)	Kolbe reaction	(D)	Coupling reaction
11.	Scu	rvy is caused due to deficiency of	f	
	(A)	Vitamin B1	(B)	Vitamin B2
	(C)	Ascorbic acid	(D)	Glutamic acid
12.	Nuc	electides are joined together by		
	(A)	Glycosidic linkage	(B)	Peptide linkage
	(C)	Hydrogen bonding	(D)	Phosphodiester linkage
				·
56/2	2/3	~	7 ~	P.T.O

प्रश्न संख्या 13 से 16 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है । इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए :

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) गलत है।
- (D) अभिकथन (A) गलत है, परन्तु कारण (R) सही है।
- 13. **अभिकथन (A) :** Cu तनु खनिज अम्ल के साथ अभिक्रिया करके H_2 मुक्त नहीं कर सकता । कारण (R) : Cu इलेक्ट्रोड विभव धनात्मक है ।
- 14. **अभिकथन (A):** प्रथम कोटि अभिक्रिया में यदि अभिकारक की सांद्रता दोगुनी हो जाती है, तो इसका अर्धायुकाल भी दोगुना हो जाता है।
 - कारण (R): प्रथम कोटि अभिक्रिया में अर्धायुकाल अभिकारक की प्रारंभिक सांद्रता पर निर्भर नहीं करता है।
- 15. अभिकथन (A): विटामिन D हमारे शरीर में संचित नहीं हो सकता है।
 - कारण (R): विटामिन D वसा में घुलनशील विटामिन है और मूत्र के माध्यम से शरीर से बाहर नहीं निकलता है।
- 16. **अभिकथन (A):** ऐरोमैटिक प्राथिमक ऐमीन को गैब्रिएल थैलिमाइड संश्लेषण द्वारा नहीं बनाया जा सकता है।
 - कारण (R): ऐरिल हैलाइड थैलिमाइड से प्राप्त ऋणायन के साथ नाभिकरागी प्रतिस्थापन अभिक्रिया नहीं कर सकते।

For questions number 13 to 16, two statements are given – one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below:

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- Assertion (A): Cu cannot liberate H₂ on reaction with dilute mineral acids.
 - Reason (R): Cu has positive electrode potential.
- 14. **Assertion (A)**: In a first order reaction, if the concentration of the reactant is doubled, its half-life is also doubled.
 - **Reason (R):** The half-life of a reaction does not depend upon the initial concentration of the reactant in a first order reaction.
- 15. **Assertion (A)**: Vitamin D cannot be stored in our body.
 - **Reason (R):** Vitamin D is fat soluble vitamin and is not excreted from the body in urine.
- 16. **Assertion (A)**: Aromatic primary amines cannot be prepared by Gabriel Phthalimide synthesis.
 - **Reason (R)**: Aryl halides do not undergo nucleophilic substitution reaction with the anion formed by phthalimide.

खण्ड – ख

17. IUPAC मानदंड के अनुसार निम्नलिखित उपसहसंयोजन यौगिकों के नाम बताइए :

- $[Co(NH_3)_4(H_2O)Cl]Cl_2$ (a) $[\operatorname{CrC} l_2(\operatorname{en})_2] \operatorname{C} l$ (b) 18. किसी अभिक्रिया के वेग नियम और वेग स्थिरांक से क्या अभिप्राय है ? किसी अभिक्रिया की कोटि पहचानें यदि उसके वेग स्थिरांक की इकाइयाँ निम्न हैं: 2 (a) s^{-1} (b) $\text{mol}^{-1} \text{ L s}^{-1}$ 19. निम्नलिखित रासायनिक समीकरण को पूर्ण एवं संतुलित कीजिए : 2×1 (a) $8\text{MnO}_4^- + 3\text{S}_2\text{O}_3^{2-} + \text{H}_2\text{O} \longrightarrow$ (b) $\operatorname{Cr}_2 \operatorname{O}_7^{2-} + 3\operatorname{Sn}^{2+} + 14\operatorname{H}^+ \longrightarrow$ (A) शून्य कोटि की अभिक्रिया $A \to P$ के लिए वेग स्थिरांक $0.0030 \text{ mol } L^{-1}s^{-1}$ है । A की 20. प्रारंभिक सांद्रता $0.10~\mathrm{M}$ से $0.075~\mathrm{M}$ तक रह जाने में कितना समय लगेगा ? 2 अथवा (B) प्लैटिनम सतह पर ${
 m NH_3}$ का अपघटन शून्य कोटि अभिक्रिया है । यदि ${
 m k}$ = $2.5 imes 10^{-4}$ $\mathrm{mol}\ \mathrm{L}^{-1}\ \mathrm{s}^{-1}$ है तो N_2 और H_2 के उत्पादन की दरें क्या हैं ? 2
- 21. निम्नलिखित प्रेक्षणों के लिए कारण दीजिए :

1 + 1

 2×1

- (a) $443~\rm K$ पर p-क्लोरोनाइट्रोबेन्जीन, जलीय NaOH के साथ अभिक्रिया करके p-नाइट्रोफ़ीनॉल देता है जबिक क्लोरोबेन्जीन उसी अभिक्रियक के साथ $623~\rm K$ और $300~\rm atm$ पर अभिक्रिया करता है।
- (b) जब क्लोरोएथेन, KCN के साथ अभिक्रिया करता है तब मुख्य उत्पाद प्रोपेन नाइट्राइल बनता है जबिक AgCN के साथ यह एथिलआइसोसायनाइड बनाता है।

56/2/3

SECTION - B

- 17. Name the following coordination compounds according to IUPAC norms: 2×1
 - (a) $[\text{Co(NH}_3)_4(\text{H}_2\text{O})\text{C}l]\text{C}l_2$
 - (b) $[\operatorname{CrC} l_2 (\operatorname{en})_2] \operatorname{C} l$
- 18. What is meant by the Rate law and Rate constant of a reaction. Identify the order of a reaction if the units of its Rate constant are:

2

2

- (a) s^{-1}
- (b) $\text{mol}^{-1} \text{ L s}^{-1}$
- 19. Complete and balance the following chemical equations: 2×1
 - (a) $8\text{MnO}_4^- + 3\text{S}_2\text{O}_3^{2-} + \text{H}_2\text{O} \longrightarrow$
 - (b) $\operatorname{Cr}_2\operatorname{O}_7^{2-} + 3\operatorname{Sn}^{2+} + 14\operatorname{H}^+ \longrightarrow$
- 20. (A) The rate constant for a zero order reaction $A \rightarrow P$ is 0.0030 mol $L^{-1}s^{-1}$. How long will it take for the initial concentration of A to fall from 0.10 M to 0.075 M?

OR

- (B) The decomposition of NH_3 on platinum surface is zero order reaction. What are the rates of production of N_2 and H_2 if $k = 2.5 \times 10^{-4}$ mol L^{-1} s⁻¹?
- 21. Give reasons for the following observations: 1 + 1
 - (a) p-Chloronitrobenzene reacts with (aq)NaOH at 443 K to give p-nitrophenol whereas chlorobenzene reacts with the same reagent at 623 K and 300 atm.
 - (b) Main product obtained when chloroethane reacts with KCN is propane nitrile while with Ag CN it is ethyl isocyanide.

		खण्ड – ग	
22.	3.34	$ m K$ पर जल में $ m CO_2$ के लिए हेनरी नियम का स्थिरांक $1.67 imes10^8~ m Pa$ है । समान त $4 imes10^5~ m Pa$ के अंतर्गत बंद किए गए $540~ m g$ सोडा जल में $ m CO_2$ के मोलों की संख्या की	गणना
	कीजि	1Ų I	3
23.	कारण	ग दीजिए :	$3 \times 1 = 3$
	(a)	विद्युत् ऊर्जा उत्पादन के लिए ऊष्मीय संयंत्रों की अपेक्षा ईंधन सेलों को वरीयता दी जाती है।	
	(b)	गैल्वेनीकृत पाइप में ज़िंक की परत खंडित होने के उपरान्त भी लोहे में जंग नहीं लगती।	
	(c)	वैद्युत-अपघटनी चालकत्व के प्रायोगिक निर्धारण में दिष्टधारा (DC) प्रयुक्त नहीं की जाती है	1
24.	(a)	$\stackrel{\circ}{\rm E}_{({ m Mn}^{2+}/{ m Mn})}^\circ$ का मान $-1.18~{ m V}$ है । समीपस्थ ${ m d}$ -ब्लॉक तत्त्वों की तुलना में यह मान उन्नालमक क्यों है ?	भत्यन्त 3 × 1 = 3
	(b)	लैन्थेनॉयड आकुंचन क्या है ?	
	(c)	Zn, Cd और Hg कोमल धातुएँ हैं, क्यों ?	
25.	(a)	संयोजकता आबंध सिद्धान्त का उपयोग करते हुए, निम्नलिखित के संकरणीकरण और चुं व्यवहार को समझाइए :	बकीय 2 + 1 = 3
		(i) $[\text{Co(NH}_3)_6]\text{C}l_3$	
		(ii) $K_2[NiCl_4]$	
		[परमाणु संख्या : Co = 27, Ni = 28]	
	(b)	${ m d}^5$ आयन का इलेक्ट्रॉनिक विन्यास लिखिए जब $\Delta_{ m o} > { m P}$ है ।	
26.	(a)	निम्नलिखित को परिभाषित कीजिए :	2 + 1 = 3
		(i) प्रतिबिंब रूप (एनेनटियोमर)	
		(ii) रेसिमिक मिश्रण	
	(h)	क्लोगेबेंजीन नाभिक्समी प्रतिस्थापन अभिक्रिया के प्रति प्रतिमेशी क्यों है ?	

SECTION - C

22. Henry's law constant for ${\rm CO_2}$ in water is 1.67×10^8 Pa at 298 K. Calculate the number of moles of ${\rm CO_2}$ in 540 g of soda water when packed under 3.34×10^5 Pa at the same temperature.

3

23. Give reasons:

 $3 \times 1 = 3$

- (a) Fuel cells are preferred for production of electrical energy than thermal plants.
- (b) Iron does not rust even if zinc coating is broken in a galvanized pipe.
- (c) In the experimental determination of electrolytic conductance, Direct Current (DC) is not used.
- 24. (a) $E_{(Mn^{2+}/Mn)}^{\circ}$ is -1.18 V. Why is this value highly negative in comparison to neighbouring d-block elements? $3 \times 1 = 3$
 - (b) What is lanthanoid contraction?
 - (c) Zn, Cd and Hg are soft metals. Why?
- 25. (a) Using valence bond theory, explain the hybridization and magnetic behaviour of the following: 2 + 1 = 3
 - (i) $[Co(NH_3)_6]Cl_3$
 - (ii) $K_2[NiCl_4]$

[At. no. : Co = 27, Ni = 28]

- (b) Write the electronic configuration of d^5 ion when $\Delta_0 > P$.
- 26. (a) Define the following:

2 + 1 = 3

- (i) Enantiomers
- (ii) Racemic mixture
- (b) Why is chlorobenzene resistant to nucleophilic substitution reaction?

- 27. (A) निम्नलिखित अभिक्रियाओं की व्याख्या कीजिए और सम्मिलित समीकरण लिखिए:
- $3 \times 1 = 3$

- (a) वोल्फ-किश्नर अपचयन
- (b) एटार्ड अभिक्रिया
- (c) कैनिज़ारो अभिक्रिया

अथवा

- (B) निम्न अभिक्रियाओं के अनुक्रम में $A,\,B$ और C की संरचनाएँ लिखिए :
- $2 \times 1\frac{1}{2} = 3$
- (a) $CH_3COOH \xrightarrow{SOCl_2} A \xrightarrow{H_2, Pd-BaSO_4} B \xrightarrow{H_2N-NH_2} C$
- (b) $CH_3CN \xrightarrow{1.(DIBAL-H)} A \xrightarrow{\neg \exists NaOH} B \xrightarrow{\Delta} C$
- 28. निम्नलिखित शब्दों को परिभाषित कीजिए:

3

- (a) प्राकृत प्रोटीन
- (b) न्युक्लियोटाइड
- (c) आवश्यक ऐमीनो अम्ल

खण्ड – घ

29. शुद्ध विलायक से विलयन में अथवा तनु विलयन से सांद्र विलयन में अर्धपारगम्य झिल्ली के माध्यम से विलायक का स्वतः प्रवर्तित प्रवाह परासरण कहलाता है। परासरण परिघटना को एक ही आकार के दो अंडों को लेकर प्रदर्शित किया जा सकता है। अंडे में खोल के नीचे और अंडे के पदार्थ के चारों ओर की झिल्ली अर्धपारगम्य होती है। अंडे को तनु हाइड्रोक्लोरिक अम्ल में डालकर बाहरी कठोर खोल को हटाया जा सकता है। कठोर खोल को हटाने के बाद एक अंडे को आसुत जल में और दूसरे को संतृप्त नमक के घोल में रखा जाता है। कुछ समय बाद, आसुत जल में रखा अंडा फूल जाता है, जबिक नमक के घोल में रखा अंडा सिकुड़ जाता है। परासरण को रोकने के लिए लगाया गया बाह्य दाब, परासरण दाब (एक अणुसंख्य गुणधर्म) कहलाता है। प्रतिलोम परासरण तब होता है जब लगाया गया बाह्य दाब परासरण दाब से अधिक हो जाता है।

56/2/3

27. (A) Explain the following reactions and write chemical equation involved:

 $3 \times 1 = 3$

- (a) Wolff-Kishner reduction
- (b) Etard reaction
- (c) Cannizzaro reaction

OR

- (B) Write the structures of A, B and C in the following sequence of reactions: $2 \times 1\frac{1}{2} = 3$
 - (a) $CH_3COOH \xrightarrow{SOCl_2} A \xrightarrow{H_2, Pd-BaSO_4} B \xrightarrow{H_2N-NH_2} C$
 - (b) $CH_3CN \xrightarrow{1.(DIBAL-H)} A \xrightarrow{Dil. NaOH} B \xrightarrow{\Delta} C$
- 28. Define the following terms:

3

- (a) Native protein
- (b) Nucleotide
- (c) Essential amino acid

SECTION - D

29. The spontaneous flow of the solvent through a semipermeable membrane from a pure solvent to a solution or from a dilute solution to a concentrated solution is called osmosis. The phenomenon of osmosis can be demonstrated by taking two eggs of the same size. In an egg, the membrane below the shell and around the egg material is semipermeable. The outer hard shell can be removed by putting the egg in dilute hydrochloric acid. After removing the hard shell, one egg is placed in distilled water and the other in a saturated salt solution. After some time, the egg placed in distilled water swells-up while the egg placed in salt solution shrinks. The external pressure applied to stop the osmosis is termed as osmotic pressure (a colligative property). Reverse osmosis takes place when the applied external pressure becomes larger than the osmotic pressure.

56/2/3 $\sim 15 \sim$ P.T.O.

- (a) प्रतिलोम परासरण को परिभाषित कीजिए । एक अर्धपारगम्य झिल्ली (SPM) का नाम बताइए जिसका उपयोग प्रतिलोम परासरण की प्रक्रिया में किया जा सकता है ।
 - $\mathbf{2}$

1

(b) (i) जब लाल रुधिर कोशिकाओं (RBC) को $0.5\%~{\rm NaC}l$ विलयन में रखा जाता है तो आप क्या होने की अपेक्षा करते हैं ?

अथवा

- (b) (ii) $1 \ \mathrm{M} \ \mathrm{KC}l$ अथवा $1 \ \mathrm{M} \ \mathrm{Z}$ यूरिया विलयन में से किसका परासरण दाब अधिक होगा। अपने उत्तर का औचित्य दीजिए।
- 1

1

- (c) परासरण दाब एक अणुसंख्य गुणधर्म क्यों है ?
- 30. ऐमीनों में नाइट्रोजन परमाणु पर एकाकी इलेक्ट्रॉन युग्म होता है जिसके कारण वे लुईस क्षारक की तरह व्यवहार करते हैं । K_b का मान जितना अधिक होगा या pK_b का मान जितना कम होगा, क्षारक उतना ही प्रबल होगा । ऐल्कोहॉल, ईथर, एस्टर आदि की तुलना में ऐमीन अधिक क्षारकीय हैं । ऐलिफैटिक ऐमीन का क्षारकीय गुण ऐल्किल प्रतिस्थापन की वृद्धि के साथ–साथ बढ़ना चाहिए । लेकिन यह नियमित रूप से नहीं होता है क्योंकि द्वितीयक ऐलिफैटिक ऐमीन अप्रत्याशित रूप से जलीय विलयन में तृतीयक ऐमीन की तुलना में अधिक क्षारकीय होता है । ऐरोमैटिक ऐमीन अमोनिया और ऐलिफैटिक ऐमीन की तुलना में दुर्बल क्षारक होते हैं । इलेक्ट्रॉन मुक्त करने वाले समूह जैसे CH_3 , $-OCH_3$, $-NH_2$ आदि, क्षारकीयता को बढ़ाते हैं जबिक इलेक्ट्रॉन खींचने (अपनयन) वाले प्रतिस्थापित समूह जैसे NO_2 , -CN, हैलोजन आदि, ऐमीन की क्षारकीयता को कम करते हैं । इन प्रतिस्थापनों का प्रभाव m^- स्थितियों की तुलना में p^- पर अधिक होता है ।
 - (a) निम्नलिखित को उनके क्षारकीय गुणों के बढ़ते हुए क्रम में व्यवस्थित कीजिए। कारण दीजिए।
 - NH_2 NH_2 NO_2 NO_2 NO_2 NO_2
 - (b) मेथिलऐमीन की तुलना में ऐनिलीन का pK_h मान अधिक क्यों होता है ?

1

(a) Define reverse osmosis. Name one SPM which can be used in the process of reverse osmosis.

2

1

1

2

1

(b) (i) What do you expect to happen when red blood corpuscles (RBC's) are placed in 0.5% NaCl solution?

OR

- (b) (ii) Which one of the following will have higher osmotic pressure in 1 M KCl or 1 M urea solution. Justify your answer.
- (c) Why osmotic pressure is a colligative property?
- 30. Amines have a lone pair of electrons on nitrogen atom due to which they behave as Lewis base. Greater the value of K_b or smaller the value of pK_b , stronger is the base. Amines are more basic than alcohols, ethers, esters, etc. The basic character of aliphatic amines should increase with the increase of alkyl substitution. But it does not occur in a regular manner as a secondary aliphatic amine is unexpectedly more basic than a tertiary amine in aqueous solutions. Aromatic amines are weaker bases than ammonia and aliphatic amines. Electron releasing groups such as $-CH_3$, $-OCH_3$, $-NH_2$, etc., increase the basicity while electron-withdrawing substituents such as $-NO_2$, -CN, halogens etc., decrease the basicity of amines. The effect of these substitute is more at p^- than at m^- position.
 - (a) Arrange the following in the increasing order of their basic character. Give reason:

$$NH_2$$
 NH_2 NO_2 NO_2 NO_2 NO_2

(b) Why pK_b of aniline is more than that of methylamine?

(c) (i) जलीय विलयन में निम्नलिखित को उनके क्षारकीय गुणों के बढ़ते हुए क्रम में व्यवस्थित कीजिए। कारण दीजिए।

1

(CH₃)₃N, (CH₃)₂NH, NH₃, CH₃NH₂

अथवा

(c) (ii) शुद्ध ऐमीनों के विरचन के लिए ऐल्किल हैलाइडों का ऐमोनी-अपघटन एक अच्छी विधि क्यों नहीं है ?

1

खण्ड – ङ

 $31.~(A)~(a)~25~^{\circ}\mathrm{C}$ पर निम्नलिखित अभिक्रिया के लिए मानक गिब्ज ऊर्जा ($\Delta_{\mathrm{r}}\mathrm{G}^{\circ}$) का परिकलन कीजिए : $\mathbf{3+2}$

$${
m Au(s) + Ca^{2+}(1M)
ightarrow Au^{3+}(1M) + Ca(s)}$$
 ${
m E}_{{
m Au^{3+}/Au}}^{\circ} = +~1.5~{
m V},~ {
m E}_{{
m Ca^{2+}/Ca}}^{\circ} = -~2.87~{
m V}$ प्रागुक्ति कीजिए कि $25~{
m ^{\circ}C}$ पर अभिक्रिया स्वतः प्रवर्तित होगी या नहीं।

 $[1 \text{ F} = 96500 \text{ C mol}^{-1}]$

(b) मिलन चाँदी में ${
m Ag_2S}$ होता है। क्या इस मिलनता को मिलन चाँदी के बर्तन को एल्युमिनियम पैन में रखकर हटाया जा सकता है, जिसमें ${
m NaC}l$ जैसा निष्क्रिय विद्युत अपघटनी विलयन भरा हो ? अर्ध अभिक्रिया के लिए मानक इलेक्ट्रॉड विभव :

$$Ag_2S(s)+2e^-\longrightarrow 2Ag(s)+S^{2-}$$
 के लिए $-0.71~V$ है और
$$Al^{3+}+3e^-\longrightarrow 2Al(s)$$
 के लिए $-1.66~V$ है ।

अथवा

31. (B) (a) निम्नलिखित को परिभाषित कीजिए:

2 + 3

- (i) सेल विभव
- (ii) ईंधन सेल
- (b) निम्नलिखित सेल के emf की 25 °C पर गणना करें:

$$Zn(s)\,|\,Zn_{\,(0.1M)}^{\,2+}\,\mid\mid\,Cd_{\,(0.01M)}^{\,2+}\,\mid\,Cd(s)$$

दिया है :
$$\begin{split} E_{Cd^{2+}\!/Cd}^{\circ} &= -0.40 \; \mathrm{V} \\ E_{Zn^{2+}\!/Zn}^{\circ} &= -0.76 \; \mathrm{V} \\ &[\log 10 = 1] \end{split}$$

(c) (i) Arrange the following in the increasing order of their basic character in an aqueous solution :

1

(CH₃)₃N, (CH₃)₂NH, NH₃, CH₃NH₂

OR

(c) (ii) Why ammonolysis of alkyl halides is not a good method to prepare pure amines?

1

SECTION - E

31. (A) (a) Calculate the standard Gibbs energy ($\Delta_{\rm r}G^{\circ}$) of the following reaction at 25 °C :

$$Au(s) + Ca^{2+}(1M) \rightarrow Au^{3+}(1M) + Ca(s)$$

$$E_{Au^{3+}/Au}^{\circ} = + 1.5 \text{ V}, E_{Ca^{2+}/Ca}^{\circ} = -2.87 \text{ V}$$

Predict whether the reaction will be spontaneous or not at 25 °C.

 $[1 \text{ F} = 96500 \text{ C mol}^{-1}]$

(b) Tarnished silver contains Ag_2S . Can this tarnish be removed by placing tarnished silverware in an aluminium pan containing an inert electrolytic solution such as NaCl? The standard electrode potential for half reaction:

$$Ag_2S(s) + 2e^- \longrightarrow 2Ag(s) + S^{2-}is - 0.71 V$$
 and for

$$Al^{3+} + 3e^- \longrightarrow 2Al(s)$$
 is -1.66 V

OR

31. (B) (a) Define the following:

2 + 3

- (i) Cell potential
- (ii) Fuel cell
- (b) Calculate emf of the following cell at 25 °C:

$$Zn(s) \, | \, Zn_{(0.1M)}^{\, 2+} \, \, | \, | \, \, Cd_{(0.01M)}^{\, 2+} \, \, | \, \, Cd(s)$$

Given:
$$E_{Cd^{2+}/Cd}^{\circ} = -0.40 \text{ V}$$

$$E_{Zn^{2+}/Zn}^{\circ} = -0.76 \text{ V}$$

$$[\log 10 = 1]$$

32. (A) आण्विक सूत्र C_2H_6O वाला कोई कार्बनिक यौगिक 'A' CrO_3 के साथ अभिक्रिया करके यौगिक 'B' बनाता है । यौगिक 'B' आयोडीन और NaOH के जलीय विलयन के साथ गर्म िकए जाने पर यौगिक 'C' का पीला अवक्षेप देता है । जब यौगिक 'A' को $413~\rm K$ पर सांद्र H_2SO_4 के साथ गर्म करते हैं तो यौगिक 'D' बनता है जो आधिक्य HI के साथ अभिक्रिया करके यौगिक 'E' देता है । यौगिक 'A', 'B', 'C', 'D' और 'E' की पहचान कीजिए तथा सम्मिलित रासायनिक समीकरण लिखिए ।

अथवा

- 32. (B) (a) निम्नलिखित अभिक्रियाओं के लिए रासायनिक समीकरण लिखिए : 3+1+1=5
 - (i) सांद्र HNO3 के साथ फ़ीनॉल की अभिक्रिया
 - (ii) ${
 m B_2H_6}$ के साथ प्रोपीन की अभिक्रिया उसके पश्चात उसका ${
 m H_2O_2/OH^-}$ द्वारा ऑक्सीकरण

5

- (iii) सोडियम t-ब्यूटॉक्साइड के साथ $\mathrm{CH_3C}l$ की अभिक्रिया
- (b) ब्यूटेन-1—ऑल और ब्यूटेन-2—ऑल के मध्य विभेद करने के लिए सरल रासायिनक परीक्षण दीजिए।
- (c) निम्नलिखित को उनके अम्लीय गुणों के बढ़ते हुए क्रम में व्यवस्थित कीजिए : फ़ीनॉल, एथेनॉल, जल
- 33. (A) (a) $CH_3 CH = CH CHO$ का IUPAC नाम बताइए ।
 - (b) प्रोपेनैल और प्रोपेनोन में विभेद करने के लिए एक सरल रासायनिक परीक्षण दीजिए। 1
 - (c) आप निम्नलिखित को कैसे परिवर्तित करेंगे ?
 - (i) टॉलूईन को बेंजोइक अम्ल में
 - (ii) एथेनॉल को प्रोपेन-2-ऑल में
 - (iii) प्रोपेनैल को 2-हाइड्रॉक्सीप्रोपेनोइक अम्ल में

अथवा

~ 20 ~

56/2/3

32. (A) An organic compound 'A', molecular formula C₂H₆O oxidises with CrO₃ to form a compound 'B'. Compound 'B' on warming with iodine and aqueous solution of NaOH gives a yellow precipitate of compound 'C'. When compound 'A' is heated with conc. H₂SO₄ at 413 K gives a compound 'D', which on reaction with excess HI gives compound 'E'. Identify compounds 'A', 'B', 'C', 'D' and 'E' and write chemical equations involved.

OR

- 32. (B) (a) Write chemical equations of the following reactions: 3 + 1 + 1 = 5
 - (i) Phenol is treated with conc. HNO₃
 - (ii) Propene is treated with $\rm B_2H_6$ followed by oxidation by $\rm H_2O_9/OH^-.$
 - (iii) Sodium t-butoxide is treated with CH₃Cl.
 - (b) Give a simple chemical test to distinguish between butan-1-ol and butan-2-ol.
 - (c) Arrange the following in increasing order of acid strength: phenol, ethanol, water
- 33. (A) (a) Give IUPAC name of $CH_3 CH = CH CHO$.
 - (b) Give a simple chemical test to distinguish between propanal and propanone.
 - (c) How will you convert the following:
 - (i) Toluene to benzoic acid
 - (ii) Ethanol to propan-2-ol
 - (iii) Propanal to 2-hydroxy propanoic acid

OR ~ 21 ~

P.T.O.

1

1

33. (B) निम्नलिखित प्रत्येक संश्लेषण में छूटे हुए प्रारंभिक पदार्थ, अभिकर्मक अथवा उत्पादों को देकर पूर्ण कीजिए : $\mathbf{5} \times \mathbf{1} = \mathbf{5}$

(b)
$$? \frac{(i) O_3}{(ii) Zn - H_2O} 2$$

(c) OH SOC
$$l_2$$
 OH

(d)
$$CHO \longrightarrow NaCN/HCl \longrightarrow COOH$$

(e)
$$\longrightarrow$$
 C CH_3

33. (B) Complete each synthesis by giving missing starting material, reagent or products : $5\times 1=5$

(a)
$$O + HO - NH_2 \xrightarrow{H^+}$$

(b)
$$? \frac{(i) O_3}{(ii) Zn - H_2O} 2$$

(c) OH
$$OH$$
 OH OH OH OH

(d)
$$CHO \longrightarrow NaCN/HCl \longrightarrow COOH$$

(e)
$$CH_3$$

56/2/3

731-3

~ 24 ~

^

Marking Scheme Strictly Confidential

(For Internal and Restricted use only)
Senior School Certificate Examination, 2024-25
SUBJECT NAME CHEMISTRY (Theory) -043

(Q.P.CODE 56/2/3) MM: 70

General Instructions: -

You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.

"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."

Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.

The Marking scheme carries only suggested value points for the answers

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.

Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right ($\sqrt{\ }$) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.

If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.

If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".

No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

A full scale of marks _____(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.

Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on an answer.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying/not same.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)

Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.

Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.

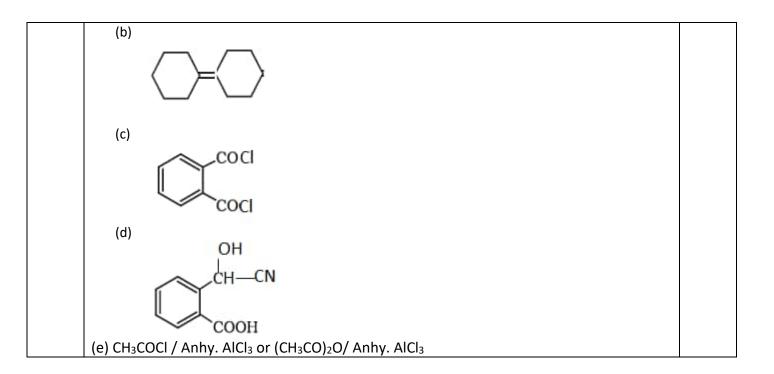
Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.

The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

MARKING SCHEME 2024-25

CHEMISTRY (Theory)- 043

QP CODE 56/2/3 MM: 70


Q. No	Value points	Mark
	SECTION A	
1	(C)	1
2	(B)	1
3	(A)	1
4	(C)	1
5	(A)	1
6	(B)	1
7	(B)	1
8	(C)	1
9	(D)	1
10	(C)	1
11	(C)	1
12	(D)	1
13	(A)	1
14	(D)	1
15	(D)	1
16	(A)	1
	SECTION B	_
17	(a) Tetraammineaquachloridocobalt(III) chloride	1
4.0	(b) Dichloridobis(ethane-1,2-diamine)chromium(III) chloride	1
18	Rate law is the expression in which reaction rate is given in terms of molar concentration of	1/2
	reactants raised to the power which is experimentally determined.	1/
	Rate constant is the rate of reaction when molar concentration of reactants is unity.	1/ ₂ 1/ ₂
	a) First order b) Second order	1/2
19		1
13	$8MnO_4^- + 3S_2O_3^{2-} + H_2O \longrightarrow 8MnO_2 + 6SO_4^{2-} + 2OH^-$	1
	(b) $Cr_2O_7^{2-} + 3 Sn^{2+} + 14H^+ \rightarrow 2Cr^{3+} + 3Sn^{4+} + 7H_2O$	1
20	[p] - [p]	1/2
	$k = \frac{[R]_0 - [R]}{\epsilon}$	
	t.	
	t _ 0.10 - 0.075	
	0.0030	1
	t = 0.025	
	0.0030	
	t = .8.33 s	1/2
	OR	72
20	$Rate = \frac{-1}{2} \Delta[NH3] = \frac{\Delta[N2]}{2} = \frac{+1}{2} \Delta[H2]$	1/2
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Rate = $\frac{-1}{2} \frac{\Delta[NH3]}{\Delta t} = \frac{\Delta[N2]}{\Delta t} = \frac{+1}{3} \frac{\Delta[H2]}{\Delta t}$ $\frac{-1}{2} \frac{\Delta[NH3]}{\Delta t} = \frac{\Delta[N2]}{\Delta t} = \frac{+1}{3} \frac{\Delta[H2]}{\Delta t} = k$	1/2
	$\frac{\Delta[N2]}{\Delta t} = 2.5 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$	1/2
	$oldsymbol{\Delta t}$	
	$\frac{\Delta[H2]}{\Delta t} = 3 \times 2.5 \times 10^{-4}$	
	= 7.5 x 10 ⁻⁴ mol L ⁻¹ s ⁻¹	1/2
21	(a) Due to electron withdrawing nature of -NO₂ group.	1

	(b) KCN is predominantly ionic and both carbon and nitrogen atoms can donate electron pairs, the attack takes place mainly through carbon atom as C—C bond is more stable than C—N bond. However, AgCN is mainly covalent in nature and nitrogen is free to donate electron pair forming	1
	isocyanide as the main product.	
	SECTION C	
22	$x_{\text{CO}_2} = \frac{p_{\text{CO}_2}}{K_{\text{H}}}$	
	$x_{\text{CO}_2} = \frac{1}{K}$	1/2
		/2
	$=$ 3.34 × 10 5	
	1.67×10^8	
	$= 2 \times 10^{-3}$	1/2
	$^{2 \times 10^{-3}} = \frac{n_{CO_2}}{n_{CO_2} + n_{H_2O}}$	
	$\frac{2 \cdot 10^{-1}}{n_{co} + n}$	1/2
	CO ₂ "H ₂ O	
	For a dilute solution ,	
	$^{2} \times 10^{-3} = \frac{n_{CO_{2}}}{}$	
	2 * 10 =	
	$n_{\rm H_2O}$	1/2
	n 540 2 × 10=3	
	$n_{\text{CO}_2} = \frac{540}{18} \times 2 \times 10^{-3}$	1/
	= 6 x 10 ⁻² mol.	½ ½
23	(a) Fuel cells are pollution free than thermal plants / Fuel cells have higher efficiency than	1
	thermal plants.	
	(b) Zinc is easily oxidized as compare to iron / E° value of Zn is more -ve than iron	1
	(c) Direct current changes the composition of the solution.	1
24	(a) Mn ²⁺ results in the half-filled (d ⁵) configuration which has extra stability.	1
	(b) The steady decrease in atomic and ionic radii in lanthanoid series.(c) Due to weak interatomic interactions / weak metallic bonds.	1 1
25	(a)(i)	1
	Hybridization: d ² sp ³	1/2
	Magnetic character: Diamagnetic.	1/2
	(ii)	
	Hybridization: sp ³	1/2
	Magnetic character: Paramagnetic.	1/2
	(b) $t_{2g}^5 e_g^0$	1
26.	(a) (i) The stereoisomers related to each other as non-superimposable mirror images.	1
	(ii) A mixture containing dextro and laevo enantiomers in equal proportions.(b) C—Cl bond acquires a partial double bond character due to resonance / the carbon atom of	1
	benzene attached to halogen is sp ² -hybridised / Explanation through resonating structures.	1
27	(A)	†
	(a) The carbonyl group of aldehydes and ketones is reduced to CH ₂ group on treatment with	
	hydrazine followed by heating with sodium or potassium hydroxide in high boiling solvent such	1/2
	as ethylene glycol	
	$C = O \xrightarrow{NH_2NH_2} C = NNH_2 \xrightarrow{KOH/ethylene glycol} CH_2 + N_2$	1/2
	(b) Chromyl chloride oxidises methyl group of toluene to a chromium complex, which on	1/2
	hydrolysis gives corresponding benzaldehyde.	/2
	, , , , , , , , , , , , , , , , , , , ,	

	CH ₃ 2.H ₃ O', \triangle	1/2
	(c) Aldehydes which do not have α -hydrogen atom, undergo self-oxidation and reduction reaction on heating with concentrated alkali gives salt of carboxylic acid and alcohol	1/2
	2 CHO + Conc. NaOH $\stackrel{\Delta}{\longrightarrow}$ CH ₂ OH + COONa	1/2
	(Or any other example) OR	
27	(B)	
21	(a) $A = CH_3COCI$ (b) CH_3CHO (c) $CH_3CH=NNH_2$	½ x 3
	(b) $A = CH_3CHO$ (b) $CH_3CH(OH)CH_2CHO$ (c) $CH_3CH=CHCHO$	½ x 3
28	(a) Protein found in a biological system with a unique three-dimensional structure and biological	1
	activity.	
	(b) Nitrogenous base + Pentose Sugar + Phosphate / a unit formed when a nucleoside is linked	1
	with phosphate.	
	(c) Those acids which cannot be synthesized in the body and must be obtained through diet.	1
	SECTION D	
29	(a)	
	When external pressure is larger than the osmotic pressure, then the movement of	
	solvent is from solution to solvent side through semi permeable membrane. / The	
	direction of osmosis can be reversed if a pressure larger than the osmotic pressure is	1
	applied to the solution side.	1
	 Cellulose acetate / Or any other suitable example. (b) (i) RBC swells up / Cells swell and may even burst due to endo-osmosis. 	1
	OR	*
	(ii) 1 M KCl,	1/2
	i = 2 / KCl dissociates into ions, whereas urea does not dissociate.	1/2
	(c) It depends upon the number of solute particles in the solution.	1
30	(a)	
	NO_2 NH_2 NH_2	
		2
	CH ₃ NO ₂	
	/ Award full marks if attempted because of printing error.	
	(b) Due to resonance in aniline the lone pair of electrons are less available while they are	1
	easily available in methyl amine.	_
	(c) (i) NH ₃ < (CH ₃) ₃ N < CH ₃ NH ₂ < (CH ₃) ₂ NH	
	OR	1
	(ii) A mixture of primary, secondary and tertiary amines and also a quaternary ammonium salt is	
	formed.	
	SECTION E	
31	(A)	
	(a) E° _{cell} = E° _{cathode} -E° _{anode}	
	= - 2.87 - 1.5 V	
	= -4.37 V	1/2
	$\triangle G^0 = - nF E^o c_{ell}$	1/2

	= -6 x 96500 X (-4.37)	
	= 2530.230 kJ/mol	1
	Reaction is non-spontaneous.	1
	(b) Yes, the tarnish can be removed.	1
	Aluminium has more negative standard electrode potential than silver so will reduce silver	1
	sulphide to silver, tarnish will be removed. /	-
	3 Ag ⁺ + Al → 3 Ag + Al ³⁺	
	E°C _{ell} = E° _{cathode} -E° _{anode}	
	= - 0.71 -(-1.66) V	
	= 0.95 V	
	This indicates that the reaction is feasible and tarnish can be removed.	
	OR (P)	
31	(B)	
	(a) (i) Potential difference between two electrodes of a galvanic cell.	1
	(ii) The galvanic cell in which combustion energy of fuels is directly converted into electrical	1
	energy.	
	b)	
	n = 2	
	E° _{cell} = E° _{cathode} -E° _{anode}	
	= - 0.40 -(-0.76) V	
	= 0.36 V	1
	$E_{Cell} = E^{\circ}_{celi} - \frac{0.059}{2} \log \left[\frac{Z n^{2+}}{C d^{2+}} \right]$	1
	$= [0.36] - \frac{\overset{0.059}{0.01}}{\overset{0}{0.01}} log \frac{\overset{0.1}{0.01}}{\overset{0}{0.01}}$	
	$\begin{bmatrix} -\begin{bmatrix} 0.30 \end{bmatrix} & 2 & tog_{0.01} \end{bmatrix}$	
	$=(0\cdot 36-0\cdot 0295)$	
	= 0·3305 V (Deduct ½ mark for no or incorrect unit)	
22	` ` `	1/ // 5
32	(A) A = CH ₃ CH ₂ OH / Ethanol / Ethyl alcohol, B = CH ₃ CHO / Ethanal / Acetaldehyde,	½ x 5
	C = CHI ₃ / lodoform / Triiodomethane,	
	$D = CH_3CH_2O CH_2 CH_3$ / Ethoxyethane / Diethyl ether,	
	E = CH ₃ CH ₂ I / Ethyl iodide / Iodoethane.	
	CrO ₃ NaOH + I ₂	
	$CH_3CH_2OH \longrightarrow CH_3CHO \longrightarrow CHI_3$	
	'A' 'B' 'C'	
	conc. H ₂ SO ₄	½ x 5
	413 K	
	HI (excess)	
	$CH_3CH_2OCH_2CH_3 \xrightarrow{HII (excess)} CH_3CH_2I$	
	3 Z Z 3 3 Z	
	D. E.	
	OR	
	UN	

22	$\langle \mathbf{n} \rangle \langle \cdot \rangle$	
32	(B) (a) (i)	
	OH OH	
	Conc. HNO ₃	1
	NO ₂	
	(ii)	
	$3 \text{ CH}_3\text{-CH=CH}_2 + (\text{H-BH}_2)_2 \longrightarrow (\text{CH}_3\text{-CH}_2\text{-CH}_2)_3 \text{B}$	
	H₂O J3H₂O₂, ŌH	1
	*	1
	$3CH_3-CH_2-CH_2-OH$	
	(iii)	
	CH ₃ CH ₃	
	CH_3 - C - $\overset{\circ}{\bigcirc}$ Na^+ + CH_3 - C \longrightarrow CH_3 - $\overset{\circ}{\bigcirc}$ - C - CH_3 + NaC	1
	CH_3	_
	(b) On heating with NaOH + I ₂ , Butan-2-ol gives yellow ppt. Of iodoform (CHI ₃) whereas Butan-1-	
	ol does not.	1
	(Or any other suitable chemical test)	1
	(c) Ethanol < Water < Phenol.	1
33	(a) But-2-enal	1
	(b) On heating with NaOH + I ₂ , propanone gives yellow ppt. Of iodoform (CHI ₃) whereas	1
	propanal does not. (Or any other suitable chemical test)	_
	(c)	
	(i)	
		1
	COOK H ₃ O ⁺ COOH	
	Heat Heat	
	/::\	
	CH₃CH₂OH PCC CH₃CHO 1. CH₃MgBr CH₃CH(OH)CH₃	1
	2. H ₃ O ⁺	
	m. 0.411.	
	CH3CH2CHO CH3CH2COOH CH3CH2COOH	
	NaOH (aq)	1
	CH ₂ —CH—COOH	
	CH ₃ —CH—COOH	
	ÒII	
	(Or any other correct method)	
22	OR (D)	45
33	(B) (a)	1 × 5= 5
	•	
	N-OH	

अंकन गोजना2024-25 २साय निक विज्ञान (सेंह्रांकि)- 043 प्रश्न-पत्र केंद्र 56/2/3

MM: 70

Q. No	मूल्यांकन विव्	Mark
	2405.ab	
1	(C)	1
2	(B)	1
3	(A)	1
4	(C)	1
5	(A)	1
6	(B)	1
7	(B)	1
8	(C)	1
9	(D)	1
10	(C)	1
11	(C)	1
12	(D)	1
13	(A)	1
14	(D)	1
15	(D)	1
16	(A)	1
	खण्ड ख	
17	(a) टेट्रायम्मीनयम्बाकलो प्रेडोकोबाल्ट (111)क्लीराइड	1
	(b) डाइक्लोरिडोबिस (र्थन-1,2-डाइस्मीन) क्रीमियम(॥)क्लीराइड	1
18	वैग नियम वह ट्यंजक होता है जिसमें किसी अभिक्रिया के केंग को अभिक्रियकों की मौतर सांद्रता के पद पर कोई धातांक त्त्रााकर व्यक्त करते हैं जिसे प्रायोगिक रूप से निकाला जाता है। वैग स्थिरोंक किसी अभिक्रिया का अभिक्रिया वेग हैं जब उसके अभिक्रियकों की मौतर सांद्रता को इकाई लेते हैं।	1/2 1/2
	उसके अभिक्रमकों की मीतर साद्रता को इकाइ लत है। a) प्रथम कोटि b) दितीय कोटि	左左

19	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1
13	(a) $8MnO_4^- + 3S_2O_3^{2-} + H_2O \longrightarrow 8MnO_2 + 6SO_4^{2-} + 2OH^-$	1
	$_{\text{(b)}}^{\text{(a)}} \text{Cr}_2 \text{O}_7^{2^-} + 3 \text{Sn}^{2^+} + 14 \text{H}^+ \rightarrow 2 \text{Cr}^{3^+} + 3 \text{Sn}^{4^+} + 7 \text{H}_2 \text{O}$	1
20	$k = \frac{[R]_0 - [R]}{t}$	1/2
	i.	
	$t = \frac{0.10 - 0.075}{0.00000000000000000000000000000000000$	1
	0.0030	1
	$t = \frac{0.025}{0.0030}$	
	t = . 8.33 s	1/2
20	<u> </u>	1/
20	Rate = $\frac{-1}{2} \frac{\Delta[NH3]}{\Delta t} = \frac{\Delta[N2]}{\Delta t} = \frac{+1}{3} \frac{\Delta[H2]}{\Delta t}$ $\frac{-1}{2} \frac{\Delta[NH3]}{\Delta t} = \frac{\Delta[N2]}{\Delta t} = \frac{+1}{3} \frac{\Delta[H2]}{\Delta t} = k$	1/2
	$\frac{-1\Delta[NR3]}{2\Delta t} = \frac{\Delta[NZ]}{\Delta t} = \frac{+1\Delta[RZ]}{3\Delta t} = k$	1/2
	$\frac{\Delta[N2]}{\Delta t} = 2.5 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$	1/2
	$\frac{\Delta[H2]}{\Delta t} = 3 \times 2.5 \times 10^{-4}$	
24	= 7.5 x 10 ⁻⁴ mol L ⁻¹ s ⁻¹	1/2
21	(a) -NO2 समूह के इलेक्ट्रॉन - अपनयक स्वभाव के कारण	1
	(b) KCN प्रमुखतः आयिनक होता है तथा कार्बन और	
	(P) KCN AHAG: 3111149 6141 6 471 9194 715	
	(b) KCN प्रमुखतः आयानक हता हत्या कावन कार्य नाइद्रोजन दोनों ही परमाणु इलेक्ट्रान युगल प्रयान करसकते हैं। आक्रमण मुख्यतः कार्वन परमाणु के द्वारा होता है	
	है। आक्रमण मुख्यतः कार्वन परमाणु के दीरा होता ह,	
	रामि (-(यावर C-N आवर की त्यम में अधिक	1
	हैं। आक्रमण मुख्यतः कावन परमाणु के द्वारा है। तथा के अधिक क्यों कि ८-८ आवंध ८-० आवंध की त्यान में अधिक स्थायी होता है। तथा पि Agen मुख्यतः सहसंयोजक प्रकृति का होता है और इसका नाइदोजन परमाणु इत्येक्ट्रॉन युगल प्रदान करने के लिए सहम होता	•
	पक्री का होता है भीर हराका वाडटोनन परमाण	
	न्या करने के लिए सम्भ होता	
	इतेक्ट्रान प्रगत प्रदान करने के लिए सहाम लाता है। इस लिए आइसी सामनाइड मुख्य उत्पाद के रूप में बनता है।	
•	हें, इस लिस् अदिसायाय अपन उत्पाप य	
	में वनता है।	
	Page 1	
22	p	
_	${}^{x}co_{2} = \frac{p_{co_{2}}}{K_{U}}$	
	n ·	1/2
	$=\frac{3.34 \times 10^5}{}$	
	1.67×10^8	
	$= 2 \times 10^{-3}$	1/2

	$2 \times 10^{-3} = \frac{n_{\text{CO}_2}}{n_1 + n_2}$	1/2
	$\frac{n_{\text{CO}_2} + n_{\text{H}_2\text{O}}}{n_{\text{CO}_2}}$	
	For a dilute solution ,	
	$^{2} \times 10^{-3} = \frac{^{n}co_{2}}{}$	14
	$\frac{1}{n_{H_2O}}$	1/2
	$n_{\text{CO}_2} = \frac{540}{10} \times 2 \times 10^{-3}$	1/2
	$\frac{18}{18} \times \frac{10^{-2}}{18} \times \frac{10^{-2}$	1/2
23	(4) करी के के में कि तम में देशा के परक्षा पर	
	होते हैं / ईंधन सेल की विश्वता उट्मीय संयंत्रों की दक्षता से अधिक होती है।	1
	रधना हो अधिक होते हैं।	
	२५ ० ने A- यामारी में योकसीकत हो	,
	(b) लाह की तुलना में अधिक	
	(b) लोहें की दुलना माजन आरामा का उपना में अधिन प्राता है/ जिंक का है मान लोहे की दलना में अधिन ऋणात्मन होता है।	
	AEUIGHAN EIGH EI	
	(८) दिव्य धारा विलयन का संघटन बदल देता है।	•
24	(a) Mn ²¹ में अर्ध-भरित् (व ⁵) विन्यास होता है जो अतिस्वत	1.
	अवस्ति प्रवास करती है।	
	(b) लेंडोनाइड श्रेणी में परमाणु और आयमिक त्रिण्या में	1
	(b) जमनाइड अला के कर्णा है।	
	CAMILATE ASATI / FEBRUARY	
,	() दुर्बल अंतरापरमाण्विक अन्योन्यमिके कारण /दुर्बल	•
	धातिक वंधन	
2 6		
25	a(h) 21da)171, 25p3	15
	यं सकरणः वैड०३ यो मिन्न कीय	1
	युमकाम महातः भात सुमकाम	12
	1	
	यंग्रेम महीतः अनुस्विकाय	15
	युनकोय प्रवासः अनुस्वकाय	
		1-
		1

	(b) t ₂₉ 5 eg°	
26.	(a)(i) त्रिविम समावयवियों का संबंध परस्पर अध्यारोपित न हो सकते बाले दर्पण प्रतिमिंबों की तरह होता है उन्हें प्रतिमिंब रूप कहते हैं। (ii) किश्रण जिसमें प्रतिनिंब रूपों के दक्षिण धुवण धुर्णक में। वाम धुवण धुर्णक समान अनुपात में अपरिचात हो।	1
	क्रियान के कारण हिंदीन की कार्यन परमाणु जी हिंदीजा के कारण / वेन्ज़ीन की कार्यन परमाणु जी हिंदीजा के अंदिन होता है अनुनावी स्वरंगमाओं के बार्य ट्याख्या	
27	(A) रेलिड्डाइड स्वं कीटोना का कार्वानिल समूह हाइड्रेज़ीन के साम अभिक्रिया करने के बाद ए श्रितीन उताइकाल जूसे उच्य क्वथनांक वाले विलायक में सोडियम या पार्टेशियम हाइड्रोक्साइड के साथ गरम करने पर-८42 राम्ह में परिवर्ति हो जाता है।	1 2
	C=0 NH, NH, C=NNH, KOH/स्प्रिलीन स्वाइकॉल CH, + N, जिमिल क्लोराइड मिश्रिल समृह को स्क क्रोमियम स्वकल में आक्सीकृत कर देता है जो जल अपधरन द्वारा सीगत बेन्जे लिउहाइड बनाता है।	12 12
	(c) CH_3 1. CrO_2Cl_2 , CS_2 CHO	12

	ए के निहहाइड जिनमें ४-हाइड्रोजन परमाणु नहीं होते, सोंप्र क्षार की उपस्थिति में गरम करने से स्वआंक्सीकृत व अपयम् की अभिक्रिया को कार्वी क्सिनिक अम्ल की नवण और रेल्कोहॉल वेता है।	12
	त्वण और रेल्कोहाल वेता है।	
	2 CHO + Conc. NaOH → CH₂OH + COONa (W) 63 € 31-21341€(U)	1 2
	अधवा	
27	(B) (a) $A = CH_3COCI$ (b) CH_3CHO (c) $CH_3CH=NNH_2$ (b) $A = CH_3CHO$ (b) $CH_3CH(OH)CH_2CHO$ (c) $CH_3CH=CHCHO$	½ x 3 ½ x 3
28	(a) जैविक निकाय से पाई ज़ीन वाली त्रिविम सेरचना तथा जैविक स्क्रियता वाले प्रोठीन	1
	(b) नाइद्रोजन युक्त क्षारकं + पेन्टोस शर्करा, फारफेट/स्क न्यूक्तिओसाइड के फ़ारफ़ेट से वैधने पर बनने वाली इकाई	1
	() व श्रमीनो अम्ल जो शरीरमे संश्लेषित नहीं हो सकते तथा जिनको भोजन में लेना आवश्यक है।	1
	શ્વ ૫૩ - ક	
29	(a) जब बाह्य पान परासरण दान से अधिक होता है तो विलायक अर्धनामान अल्ली के माध्यम से विलायन में से विलायक में पारगमन करता हैं विलायन पर परासरण दान से अधिक दान लगाकर परासरण की दिशा को प्रतिविति किया जा सकता है।	1
	ग्रेस असीतेट / स्थाता कोई उपभवत उदाहरण	1
	(b) हिं केशिका प्रला जाती हैं /केशिकार प्रला जाती हैं । ऑर अंत्परास्थण के कारण पर जाती हैं। अध्या	1
	1) HKCL आयमों में वियोजित हो जाता है जबिन यूरिया	1 2 1 2
	वियो जित नहीं होता। ८) मह विलयन में क्तिय केणों की खंख्या पर निभेर करता है।	

30	(a) NOZ INTO INTO	
	(a) NO2 NH2	
		_
	ट्रांड NO2 /मुप्रण अदि के कारण प्रधास	2
	काने पर भूगें अंक दिस जीस ।	
	करने पर धर्ण अंक दिस ऑस् । करने पर धर्ण अंक दिस ऑस् । ७ रोनिलीन में अनुनाद के कारण असहभानित इलेक्ट्रॉन युगल कम उपलब्ध होता जबिक में चिलरोमीन में वह आसानी	
	क्रिक्रामा में वह आसानी	1 1
	41101 and 340000 Clai DIMITY 111-11 11 12	'
	से उपत्रव्य हाते हैं।	
	CH3)2NH	1
	CU NH3 < (CH3)3N < CH3NH2 < (CH3)2NH	
	युग्रवी	
	(ii) प्राथिक दितीयक स्वं तृतीयक रेमीन तथा यन्ष्क अमोनियम लंबण का मित्रण प्राप्त होता है।	
	ां) प्राथमिक दितीयक स्व तृतीयक स्मात त्या या	
	यम्मिम् लक्ण का मित्रण प्राप्त होता है।	
	3(4) 10 (4)	
31	(A)	
31	(A) (a) E° _{cell} = E° _{cathode} -E° _{anode}	
	= - 2.87 - 1.5 V	
	= - 4.37 V	立
	$\Delta G^0 = - \text{ nF } E^0 c_{\text{ell}}$	그
	= -6 x 96500 X (-4.37)	
	= 2530.230 kJ/mol अभिक्रिया स्वतः अप्रवर्ति है।	4
	अभिन्न न सकते हैं।	
	(b) ET, HICHAI OF ECIZION AND WIEL TO	[
	मल्यमीनियम का मानक, इतकराड प्रमय नाय	
	The Hulletien Eldl & 31d: Ag 25 and 21141 H 344147	
	कार्यके महिला है प्रतिन्ता की इटाया जी सकता है	'
	अभिक्रियों स्वतः अप्रवर्ति है। (b) हाँ, मिलनता को हटाया जा सकता है। क्ल्युमीनियम का मानक इलेक्ट्रोड विभव याँदी से अधिक ऋणात्मक होता है अतः Ag2S को याँदी में अपयित किया जा सकता है, मिलनता को हटाया जा सकता है/	
	$3 \text{ Ag}^+ + \text{Al} \longrightarrow 3 \text{ Ag} + \text{Al}^{3+}$	
	=-0.71 -(-1.66) V	
	=-0.71 -(-1.66) V == 0.95 V यह दशीता ट्रै कि अभिक्रिया संभव है और मलिनता की हराया	
	जा सकता है।	
	अभवा	
	1	

	(B)	
31	(B) (1) में लवेनी सल के दोना इलें क्ट्रोडों के बीच विभवात 2	1 1
	(a) () शिल्वना सल के दीना इलाक्ट्रांग का का न	
	(i) मेल्वेनी सेल जिसमें ईधनों की यहन उम्मी की	1
	A) - A Par	}
	सीधे-ही विद्युत उर्जी में परिवर्तित किया जाता है।	
	b)	
	n =2 E° _{cell} = E° _{cathode} -E° _{anode}	
	= -0.40 - (-0.76) V)
	= 0.36 V	,
	$E_{Cell} = E^{\circ}_{celi} - \frac{0.059}{2} \log \left[\frac{Zn^{2+}}{Cd^{2+}} \right]$	
	- -	
	$= [0.36] - \frac{0.059}{2} \log \frac{0.1}{0.01}$	
	(2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	
	$= (0 \cdot 36 - 0 \cdot 0295)$	1
	= 0.3305 V (इकार जातर या न देने पर प्रश्नेककार दे	•
		1/ 5
32	(A) $A = CH_3CH_2OH /$	½ x 5
	B = CH₃CHO / C = CHI₃ /	
	$D = CH_3CH_2O CH_2 CH_3$	
	$E = CH_3CH_2U / Ethyl iodide$	
	CrO ₃ NaOH + I ₂	
	$CH_3CH_2OH \xrightarrow{CIO_3} CH_3CHO \xrightarrow{CH_3}$	
	'A' 'B' 'C'	
	conc. H ₂ SO ₄	½ x 5
	· · · · · · · · · · · · · · · · · · ·	
	413 K	
	HI (आधिक्य) CH CH I	
	$CH_3CH_2OCH_2CH_3 \xrightarrow{HI(3HM44)} CH_3CH_2I$	
	3 Z Z 3	
	'D' 'E'	
	अथवा	
32	(B) (a)	
	(i)	
	OH OH OO2N J NO2	
	Conc. HNO ₃	
	NO ₂	
	(ii)	
1		

3 ((iii)	$CH_3-CH=CH_2 + (H-BH_2)_2 \longrightarrow (CH_3-CH_2-CH_2)_3B$ $H_2O \downarrow 3H_2O_2, \bar{O}H$ $3CH_3-CH_2-CH_2-OH$	1
	CH ₃ CH ₃ CH ₃ -C-ÖNa + CH ₃ -Cl → CH ₃ -Ö-C-CH ₃ + NaCl CH ₃	1
67	हिंदित।	
ری	रुधेनाल (जन ८ फीनाल	
33 (a)	OJC-2-5-101	
(b)	प्रोपेनोन को NaOH+12 के साथ ग्राम करने पर ति रेग का अवकेप प्राप्त होता है जबकि प्रोपेनेल (Сиз)	1
(c)		
	$\begin{array}{c c} & & & \\ \hline & & \\ \hline & & \\ \hline & & \\$	(
	3CH ₂ OH PCC CH ₃ CHO 1. CH ₃ MgBr CH ₃ CH(OH)CH ₃ CH ₃ CH ₂ CHO CH ₃ CH ₂ COOH CL ₂ . Red Phosphorous CH ₃ CH(CI)-COOH	1
	(भ3-CH-COOH (ग्रा कोई अन्भ उपभुक्त विधि)	

	अथवा	
33	(B) (a)	1 × 5=
	N-OH	3
	(b)	
	(c)	
	COCI	
	cocl	
	(d)	
	ОН	
	CH—CN	
	COOH	·
	(e) CH ₃ COCl / Anhy. AlCl ₃ or (CH ₃ CO) ₂ O/ Anhy. AlCl ₃	