


Series: ZYWX1

 $SET \sim 3$ 



रोल नं. oll No. प्रश्न-पत्र कोड Q.P. Code



परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

# नोट / NOTE



- (I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं ।
  - Please check that this question paper contains 23 printed pages.
- ${
  m (II)}$  कृपया जाँच कर लें कि इस प्रश्न–पत्र में  ${f 33}$  प्रश्न हैं ।
  - Please check that this question paper contains 33 questions.
- (III) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें। Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- (IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथा स्थान पर प्रश्न का क्रमांक अवश्य लिखें।

Please write down the serial number of the question in the answerbook at the given place before attempting it.

- (V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अविध के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
  - 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.



रसायन विज्ञान (सैद्धांतिक) CHEMISTRY (Theory)



निर्धारित समय: 3 घण्टे

Time allowed: 3 hours

अधिकतम अंक : 70

Maximum Marks : 70

P.T.O.

56/1/3

730\_3

1



# सामान्य निर्देश:

# निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए:

- (i) इस प्रश्न-पत्र में 33 प्रश्न हैं। **सभी** प्रश्न अनिवार्य हैं।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है खण्ड **क, ख, ग, घ** तथा **ङ**।
- (iii) **खण्ड क –** प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) **खण्ड ख -** प्रश्न संख्या 17 से 21 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 2 अंकों का है ।
- (v) **खण्ड ग –** प्रश्न संख्या 22 से 28 तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 3 अंकों का है।
- (vi) **खण्ड घ –** प्रश्न संख्या **29** तथा **30** प्रकरण आधारित प्रश्न हैं। प्रत्येक प्रश्न **4** अंकों का है।
- (vii) **खण्ड ङ –** प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड **क** के अतिरिक्त अन्य सभी खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग **वर्जित** है।

जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$c = 3 \times 10^8 \text{ m/s}$$

$$h = 6.63 \times 10^{-34} \text{ Js}$$

$$e = 1.6 \times 10^{-19} C$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$$

$$\epsilon_0 = 8.854 \times 10^{-12} \ \mathrm{C^2 \ N^{-1} \ m^{-2}}$$

$$\frac{1}{4\pi\epsilon_0}$$
 = 9 × 10<sup>9</sup> N m<sup>2</sup> C<sup>-2</sup>

इलेक्ट्रॉन का द्रव्यमान ( $m_a$ ) =  $9.1 \times 10^{-31} \text{ kg}$ .

न्यूट्रॉन का द्रव्यमान = 
$$1.675 \times 10^{-27} \text{ kg}$$
.

प्रोटॉन का द्रव्यमान = 
$$1.673 \times 10^{-27} \text{ kg}$$
.

आवोगाद्रो संख्या = 
$$6.023 \times 10^{23}$$
 प्रति ग्राम मोल

बोल्ट्ज़मान नियतांक = 
$$1.38 \times 10^{-23} \, \mathrm{JK^{-1}}$$



#### General Instructions:

#### Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into five sections Section A, B, C, D and E.
- (iii) Section A questions number 1 to 16 are multiple choice type questions. Each question carries 1 mark.
- (iv) Section B questions number 17 to 21 are very short answer type questions. Each question carries 2 marks.
- (v) Section C questions number 22 to 28 are short answer type questions. Each question carries 3 marks.
- (vi) Section D questions number 29 and 30 are case-based questions. Each question carries 4 marks.
- (vii) Section E questions number 31 to 33 are long answer type questions. Each question carries 5 marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the sections except Section -A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculator is **NOT** allowed.

 $You \ may \ use \ the \ following \ values \ of \ physical \ constants \ wherever \ necessary:$ 

$$c = 3 \times 10^8 \text{ m/s}$$

$$h = 6.63 \times 10^{-34} \text{ Js}$$

$$e = 1.6 \times 10^{-19} C$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$$

$$\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$$

$$\frac{1}{4\pi\epsilon_0} = 9\times 10^9~N~m^2~C^{-2}$$

Mass of electron (m<sub>e</sub>) =  $9.1 \times 10^{-31}$  kg.

Mass of neutron =  $1.675 \times 10^{-27}$  kg.

Mass of proton =  $1.673 \times 10^{-27}$  kg.

Avogadro's number =  $6.023 \times 10^{23}$  per gram mole

Boltzmann's constant =  $1.38 \times 10^{-23} \, \mathrm{JK^{-1}}$ 

खण्ड - क

 $(16 \times 1 = 16)$ 

प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के 1 अंक के प्रश्न हैं।

- 1.  $\mathrm{Sn^{4+}/Sn^{2+}}$  युग्म के लिए मानक इलेक्ट्रोड विभव  $+0.15~\mathrm{V}$  और  $\mathrm{Cr^{3+}/Cr}$  युग्म के लिए यह  $-0.74~\mathrm{V}$  है । दो युग्म अपनी मानक अवस्थाओं में संयोजित होकर एक सेल का निर्माण करते हैं । सेल विभव होगा
  - (A) +1.19 V

(B) +0.89 V

(C) +0.18 V

- (D) +1.83 V
- 2. चुंबकीय आधूर्ण इसके प्रचक्रणी कोणीय संवेग और कक्षीय कोणीय संवेग से जुड़ा होता है ।  ${
  m Cr}^{3+}$  आयन (परमाणु क्रमांक :  ${
  m Cr}=24$ ) का प्रचक्रण मात्र चुंबकीय आधूर्ण मान \_\_\_\_\_\_ है ।
  - (A) 2.87 B.M.

(B) 3.87 B.M.

(C) 3.47 B.M.

- (D) 3.57 B.M.
- 3. संगुणन में विलेय का अपसामान्य मोलर द्रव्यमान
  - (A) बढ़ेगा

(B) घटेगा

(C) अपरिवर्तित रहेगा

- (D) पहले बढ़ेगा और फिर घटेगा
- 4. नाभिकरागी द्विआणविक प्रतिस्थापन अभिक्रिया से गुजरने वाले ऐल्किल हैलाइड में सम्मिलित है
  - (A) विन्यास का धारण

(B) रेसिमिक मिश्रण का बनना

(C) विन्यास का प्रतिलोमन

- (D) कार्बोधनायन का निर्माण
- 5. निम्नलिखित यौगिकों को उनके क्वथनांक के बढ़ते क्रम में व्यवस्थित करें :

सही क्रम है

 $(A) \quad (ii) < (i) < (iii)$ 

(B) (i) < (ii) < (iii)

(C) (iii) < (i) < (ii)

(D) (iii) < (ii) < (i)

~ 4 ~



#### SECTION - A

 $(16 \times 1 = 16)$ 

Questions No. 1 to 16 are Multiple Choice type questions carrying 1 mark each.

1. Standard electrode potential for  $\rm Sn^{4+}/Sn^{2+}$  couple is +0.15 V and that for the  $\rm Cr^{3+}/Cr$  couple is -0.74 V. The two couples in their standard states are connected to make a cell. The cell potential will be

(A) +1.19 V

(B) +0.89 V

(C) +0.18 V

(D) +1.83 V

2. The magnetic moment is associated with its spin angular momentum and orbital angular momentum. Spin only magnetic moment value of  $Cr^{3+}$  ion (Atomic no. : Cr = 24) is \_\_\_\_\_\_.

(A) 2.87 B.M.

(B) 3.87 B.M.

(C) 3.47 B.M.

- (D) 3.57 B.M.
- 3. In case of association, abnormal molar mass of solute will

(A) increase

(B) decrease

(C) remain same

- (D) first increase and then decrease
- 4. Alkyl halides undergoing nucleophilic bimolecular substitution reaction involve

(A) retention of configuration

(B) formation of racemic mixture

(C) inversion of configuration

- (D) formation of carbocation
- 5. Arrange the following compounds in increasing order of their boiling points:

(i) 
$$CH_3$$
  $CH - CH_2Br$  (ii)  $CH_3CH_2CH_2CH_2Br$  (iii)  $H_3C - C - CH_3$   $Br$ 

The correct order is

 $(A) \quad (ii) < (i) < (iii)$ 

(B) (i) < (ii) < (iii)

(C) (iii) < (i) < (ii)

(D) (iii) < (ii) < (i)



| 6.  | [Pt(    | ${ m NH_3)}_2{ m C}l_2{ m J}^{2+}$ का सही IUPAC नाम है |         |                                                    |
|-----|---------|--------------------------------------------------------|---------|----------------------------------------------------|
|     | (A)     | डाइऐम्मीनडाइक्लोरिडोप्लैटिनम (II)                      |         |                                                    |
|     | (B)     | डाइऐम्मीनडाइक्लोरिडोप्लैटिनम (IV)                      |         |                                                    |
|     | (C)     | डाइऐम्मीनडाइक्लोरिडोप्लैटिनम (O)                       |         |                                                    |
|     | (D)     | डाइऐम्मीनडाइक्लोरिडोप्लैटिनेट (IV)                     |         |                                                    |
| 7.  | प्रोपित | न मैग्नीशियम ब्रोमाइड को $\mathrm{CO}_2$ के साथ अभिां  | क्रेयित | करने के पश्चातु अम्ल जलअपघटन करने पर               |
|     |         | वाला अम्ल है                                           |         | `                                                  |
|     | (A)     | $C_3H_7COOH$                                           | (B)     | $\mathrm{C_2H_5COOH}$                              |
|     | (C)     | $\mathrm{CH_{3}COOH}$                                  | (D)     | $C_3H_7OH$                                         |
|     |         |                                                        |         |                                                    |
| 8.  | अर्म्ल  | ाय $\mathrm{KMnO}_4$ सल्फाइट को ऑक्सीकृत कर देत        | ा है    |                                                    |
|     | (A)     | $\mathrm{S}_2\mathrm{O}_3^{2-}$ में                    | (B)     | $\mathrm{S_2O}_8^{2-}$ में                         |
|     | (C)     | $\mathrm{SO}_2(\mathrm{g})$ में                        | (D)     | $SO_4^{2-}$ ਸੇਂ                                    |
| 9.  | निम्ना  | लेखित में अम्ल सामर्थ्य का सही क्रम कौन सा             | है ?    |                                                    |
|     | (A)     | $\mathrm{C_6H_5OH} > \mathrm{H_2O} > \mathrm{ROH}$     | (B)     | $C_6H_5OH > ROH > H_2O$                            |
|     | (C)     | $\mathrm{ROH} > \mathrm{C_6H_5OH} > \mathrm{H_2O}$     | (D)     | $\mathrm{H_2O} > \mathrm{C_6H_5OH} > \mathrm{ROH}$ |
| 10. | अचार    | बनाने के लिए नमक के सांद्र विलयन में रखा ग             | ाया कच  | चा आम सिकुड़ जाता है, क्योंकि                      |
|     | (A)     | यह परासरण के कारण जल प्राप्त करता है।                  |         | -                                                  |
|     | (B)     | यह उत्क्रम परासरण के कारण जल खो देता है                | l       |                                                    |
|     | (C)     | यह उत्क्रम परासरण के कारण जल प्राप्त करत               | ा है ।  |                                                    |
|     | (D)     | यह परासरण के कारण जल खो देता है।                       |         |                                                    |
|     |         |                                                        |         | ^^^^                                               |



| 6.            | The         | correct IUPAC name of [Pt(NH <sub>3</sub> )        | $(2Cl_2]^2$      | <sup>2+</sup> is                                   |  |  |  |
|---------------|-------------|----------------------------------------------------|------------------|----------------------------------------------------|--|--|--|
|               | (A)         | Diamminedichloridoplatinum (I                      | I)               |                                                    |  |  |  |
|               | (B)         | B) Diamminedichloridoplatinum (IV)                 |                  |                                                    |  |  |  |
|               | (C)         | C) Diamminedichloridoplatinum (O)                  |                  |                                                    |  |  |  |
|               | (D)         | Diamminedichloridoplatinate (I                     | V)               |                                                    |  |  |  |
| 7.            | The         | acid formed when propyl magn                       | nesiui           | m bromide is treated with $\mathrm{CO}_2$          |  |  |  |
|               | follo       | owed by acid hydrolysis is:                        |                  |                                                    |  |  |  |
|               | (A)         | $C_3H_7COOH$                                       | (B)              | $\mathrm{C_2H_5COOH}$                              |  |  |  |
|               | (C)         | $\mathrm{CH_{3}COOH}$                              | (D)              | $\mathrm{C_3H_7OH}$                                |  |  |  |
| 8.            | Acid        | lified $\mathrm{KMnO}_4$ oxidises sulphite to      |                  |                                                    |  |  |  |
|               | (A)         | $S_2O_3^{2-}$                                      | (B)              | $S_2O_8^{2-}$ $SO_4^{2-}$                          |  |  |  |
|               | (C)         | $SO_2(g)$                                          | (D)              | $SO_4^{2-}$                                        |  |  |  |
| 9.            | Whi         | ch is the correct order of acid str                | $\mathbf{ength}$ | from the following?                                |  |  |  |
|               | (A)         | $\mathrm{C_6H_5OH} > \mathrm{H_2O} > \mathrm{ROH}$ | (B)              | $\mathrm{C_6H_5OH} > \mathrm{ROH} > \mathrm{H_2O}$ |  |  |  |
|               | (C)         | $\mathrm{ROH} > \mathrm{C_6H_5OH} > \mathrm{H_2O}$ | (D)              | $\mathrm{H_2O} > \mathrm{C_6H_5OH} > \mathrm{ROH}$ |  |  |  |
| 10.           |             | unripe mango placed in a concen<br>vels because    | trated           | d salt solution to prepare pickle,                 |  |  |  |
|               | (A)         | it gains water due to osmosis                      |                  |                                                    |  |  |  |
|               | (B)         | it loses water due to reverse osr                  | nosis            |                                                    |  |  |  |
|               | (C)         | it gains water due to reverse os                   | mosis            |                                                    |  |  |  |
|               | (D)         | it loses water due to osmosis                      |                  |                                                    |  |  |  |
| 5 <i>6/</i> 1 | /9          |                                                    |                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~             |  |  |  |
| 56/1          | ./ <b>3</b> | ~ 7                                                | <i>7</i> ∼       | P.T.O.                                             |  |  |  |



- 11. प्रोपेनेमाइड को प्रोपेनेमीन में परिवर्तित करने के लिए सबसे उत्तम अभिकर्मक \_\_\_\_\_ है।
  - (A)  $H_2$  का आधिक्य
  - (B) जलीय NaOH में  ${
    m Br}_2$
  - (C) लाल फॉस्फोरस की उपस्थिति में आयोडीन
  - (D) ईथर में  $LiAlH_A$
- 12. निम्नलिखित में से कौन सा कथन ग्लूकोज़ के विषय में सत्य नहीं है ?
  - (A) यह एक एल्डोहेक्सोस है।
  - (B) HI के साथ गर्म करने पर यह n-हेक्सेन बनाता है।
  - (C) यह फ्यूरेनोस रूप में उपस्थित होता है।
  - (D) यह शिफ-परीक्षण नहीं देता है।

प्रश्न संख्या 13 से 16 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है । इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए :

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) गलत है।
- (D) अभिकथन (A) गलत है, परन्तु कारण (R) सही है।
- 13. **अभिकथन (A)** : ग्लाइसीन के अतिरिक्त सभी प्राकृतिक रूप से पाए जाने वाले  $\alpha$ -ऐमीनो अम्ल ध्रुवण घूर्णक होते हैं ।
  - कारण (R) : अधिकांश प्राकृतिक रूप से पाए जाने वाले ऐमीनो अम्लों में L-विन्यास होता है।
- 14. अभिकथन (A) : एथेनॉल का क्वथनांक मेथॉक्सीमेथेन से अधिक होता है।
  - कारण (R) : एथेनॉल में अंतः अणुक हाइड्रोजन बंध होता है।

\_\_\_\_



- 11. The best reagent for converting propanamide into propanamine is
  - (A) excess  $H_2$
  - (B)  $Br_2$  in aqueous NaOH
  - (C) iodine in the presence of red phosphorus
  - (D)  $LiAlH_4$  in ether
- 12. Which of the following statements is not true about glucose?
  - (A) It is an aldohexose.
  - (B) On heating with HI it forms n-hexane.
  - (C) It exists in furanose form.
  - (D) It does not give Schiff's test.

For questions number 13 to 16, two statements are given – one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below:

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- 13. Assertion (A): All naturally occurring  $\alpha$ -amino acids except glycine are optically active.
  - **Reason (R)**: Most naturally occurring amino acids have L-configuration.
- 14. **Assertion (A):** The boiling point of ethanol is higher than that of methoxymethane.
  - Reason (R) : There is intramolecular hydrogen bonding in ethanol.

56/1/3 ~ 9 ~ P.T.O.

·



15. **अभिकथन (A)** : ऐल्किल हैलाइडों के क्वथनांक निम्न क्रम में घटते हैं : RI > RBr > RCl > RF।

कारण (R) : ऐल्किल क्लोराइड, ब्रोमाइड और आयोडाइड के क्वथनांक तुलनीय आण्विक

द्रव्यमान वाले हाइड्रोकार्बन की तुलना में काफी अधिक होते हैं।

16. अभिकथन (A) :  $[\mathrm{Cr}(\mathrm{H_2O})_6]\mathrm{C}l_2$  तथा  $[\mathrm{Fe}(\mathrm{H_2O})_6]\mathrm{C}l_2$  होमोलेप्टिक संकुल के उदाहरण हैं ।

कारण (R) : धातु के साथ जुड़े सभी लिगैन्ड एक प्रकार के हैं।

#### खण्ड – ख

17. क्या आप अपेक्षा करते हैं कि प्रोपेनल की तुलना में बेंजैल्डिहाइड नाभिकरागी योगज अभिक्रियाओं में अधिक अभिक्रियाशील या कम अभिक्रियाशील होगा ? अपना उत्तर स्पष्ट कीजिए।

2

 $\mathbf{2}$ 

- 18. निम्नलिखित रासायनिक समीकरण को पूर्ण एवं संतुलित कीजिए :
  - (a)  $8\text{MnO}_4^- + 3\text{S}_2\text{O}_3^{2-} + \text{H}_2\text{O} \longrightarrow$
  - (b)  $Cr_2O_7^{2-} + 3Sn^{2+} + 14H^+ \longrightarrow$
- 19. (A) कारण बताइए : (1 + 1 = 2)
  - (a) प्रेशर-कुकर में खाना पकाना, खुले बर्तन (कड़ाही) की तुलना में तेज़ होता है।
  - (b) द्रव X और द्रव Y को मिलाने पर, परिणामी विलयन का आयतन कम हो जाता है । परिणामी विलयन राउल्ट के नियम से किस प्रकार का विचलन दर्शाता है ? द्रव X और Y को मिलाने के बाद आप ताप में क्या परिवर्तन प्रेक्षित करेंगे ?

#### अथवा

(B) स्थिरक्वाथी को परिभाषित करें। राउल्ट के नियम में ऋणात्मक विचलन से किस प्रकार का स्थिरक्वाथी बनता है ? एक उदाहरण दीजिए।



- 15. **Assertion (A)**: The boiling points of alkyl halides decrease in the order: RI > RBr > RCl > RF.
  - Reason (R): The boiling points of alkyl chlorides, bromides and iodides are considerably higher than that of the hydrocarbon of comparable molecular mass.
- 16. Assertion (A) :  $[Cr(H_2O)_6]Cl_2$  and  $[Fe(H_2O)_6]Cl_2$  are examples of homoleptic complexes.
  - **Reason (R)**: All the ligands attached to the metal are the same.

#### SECTION - B

17. Would you expect benzaldehyde to be more reactive or less reactive in nucleophilic addition reactions than propanal? Justify your answer.

 $\mathbf{2}$ 

2

- 18. Complete and balance the following chemical equations:
  - (a)  $8\text{MnO}_4^- + 3\text{S}_2\text{O}_3^{2-} + \text{H}_2\text{O} \longrightarrow$
  - (b)  $Cr_2O_7^{2-} + 3 Sn^{2+} + 14H^+ \longrightarrow$
- 19. (A) Give reasons: (1 + 1 = 2)
  - (a) Cooking is faster in pressure cooker than in an open pan.
  - (b) On mixing liquid X and liquid Y, volume of the resulting solution decreases. What type of deviation from Raoult's law is shown by the resulting solution? What change in temperature would you observe after mixing liquids X and Y?

OR

(B) Define Azeotrope. What type of Azeotrope is formed by negative deviation from Raoult's law? Give an example.



20. निम्नलिखित प्रत्येक अनुक्रम अभिक्रिया में A और B की पहचान कीजिए :

(1 + 1 = 2)

- $CH_3CH_2Cl \xrightarrow{NaCN} A \xrightarrow{H_2/Ni} B$
- $\text{(b)} \quad \mathrm{C_6H_5NH_2} \xrightarrow[0-5\ ^{\circ}\mathrm{C}]{} \mathrm{A} \xrightarrow[H^+]{} \mathrm{C_6H_5NH_2} \mathrm{B}$
- 21. इनके जल-अपघटन उत्पाद क्या हैं ?

 $\mathbf{2}$ 

- सूक्रोज़ (a)
- (b) लैक्टोज़

#### खण्ड 🗕 ग

 $298~\mathrm{K}$  पर जल में  $\mathrm{CO_2}$  गैस की जल में विलेयता के लिए हेनरी स्थिरांक का मान  $1.67 \times 10^8~\mathrm{Pa}$ है। समान ताप पर  $500~\mathrm{m}l$  सोडा जल  $2.53 imes 10^5~\mathrm{Pa}$  दाब पर बंद किया गया। सोडा जल में घूली हुई  $\mathrm{CO}_2$  के मोलों की गणना कीजिए।

 $\mathbf{3}$ 

अभिक्रिया के  $\Delta_{\mathbf{r}}$  G° और  $\log\,\mathrm{K}_{\mathrm{C}}$  की गणना कीजिए। 23.

3

$$2Cr(s) + 3Cd^{2+}(aq) \longrightarrow 2Cr^{3+}(aq) + 3Cd(s)$$

दिया गया है :  $E_{\mathrm{Cr}^{3+}/\mathrm{Cr}}^{\circ} = -0.74 \ \mathrm{V}$ 

$$E_{Cd^{2+}/Cd}^{\circ} = -0.40 \text{ V}$$

 $[R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}, F = 96500 \text{ C mol}^{-1}]$ 

जब ताप  $293~\mathrm{K}$  से  $313~\mathrm{K}$  तक बदलता है तो अभिक्रिया की दर चौगुनी हो जाती है । अभिक्रिया की सक्रियण ऊर्जा की गणना कीजिए यह मानते हुए कि यह ताप के साथ नहीं बदलती है।

3

[दिया है : 
$$\log 4 = 0.602$$
,  $\log 2 = 0.301$ ,  $R = 8.314~\mathrm{J~K^{-1}~mol^{-1}}$ ]



20. Identify A and B in each of the following reaction sequence: (1 + 1 = 2)

 $\mathbf{2}$ 

3

3

3

- (a)  $CH_3CH_2Cl \xrightarrow{NaCN} A \xrightarrow{H_2/Ni} B$
- (b)  $C_6H_5NH_2 \xrightarrow{NaNO_2/HCl} A \xrightarrow{C_6H_5NH_2} B$
- 21. What are the hydrolysis products of:
  - (a) Sucrose
  - (b) Lactose

#### SECTION - C

- 22. Henry's law constant for  ${\rm CO_2}$  in water is  $1.67 \times 10^8$  Pa at 298 K. Calculate the number of moles of  ${\rm CO_2}$  in 500 ml of soda water when packed under  $2.53 \times 10^5$  Pa at the same temperature.
- 23. Calculate  $\Delta_r$  G° and log  $K_C$  of the reaction.

$$2Cr(s) + 3Cd^{2+}(aq) \longrightarrow 2Cr^{3+}(aq) + 3Cd(s)$$

Given 
$$E_{Cr^{3+}/Cr}^{\circ} = -0.74 \text{ V}$$

$$E_{Cd^{2+}/Cd}^{\circ} = -0.40 \text{ V}$$

 $[R=8.314~J~K^{-1}~mol^{-1},~F=96500~C~mol^{-1}]$ 

24. The rate of a reaction quadruples when the temperature changes from 293 K to 313 K. Calculate the energy of activation of the reaction assuming that it does not change with temperature.

[Given:  $\log 4 = 0.602$ ,  $\log 2 = 0.301$ , R = 8.314 J K<sup>-1</sup> mol<sup>-1</sup>]

56/1/3 ~ 13 ~ P.T.O.



25. (A) निम्नलिखित प्रत्येक अभिक्रिया के लिए प्रमुख मोनोहैलो उत्पाद की संरचना बनाइये : (1+1+1=3)

(a) 
$$Cl$$

$$+ HBr \longrightarrow ?$$
(b)  $CH_3$ 

$$OH \longrightarrow HCl, 35$$

$$38491$$

(B) आप कैसे रूपांतरित करेंगे ?

 $(3 \times 1 = 3)$ 

- (a) क्लोरोबेन्ज़ीन को बाईफेनिल में
- (b) प्रोपीन को 1-आयडोप्रोपेन में
- (c) 2-ब्रोमोब्यूटेन को ब्यूट-2-ईन में

26. 3d संक्रमण श्रेणी के तत्व इस प्रकार दिए गए हैं :

(1+1+1=3)

Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn निम्नलिखित का उत्तर दीजिए:

- (a) कॉपर का  $E_{M^{2+}\!/\!M}^{\circ}$  मान असाधारण रूप से धनात्मक है, क्यों ?
- (b) कौन सा तत्व +2 ऑक्सीकरण अवस्था में एक प्रबल अपचायक है और क्यों ?
- (c)  $Zn^{2+}$  लवण रंगहीन होते हैं, क्यों ?
- 27. (a) निम्नलिखित यौगिकों को उनके क्वथनांक के बढ़ते क्रम में व्यवस्थित करें :  $(CH_3)_2 NH, \ CH_3 CH_2 NH_2, \ CH_3 CH_2 OH$ 
  - (b) निम्नलिखित में से प्रत्येक के लिए संभावित स्पष्टीकरण दीजिए:
    - (i) ऐरोमैटिक प्राथमिक ऐमीनों को गैब्रिएल थैलिमाइड संश्लेषण से नहीं बनाया जा सकता।
    - (ii) एमाइड, ऐमीनों की तुलना में कम क्षारकीय होते हैं।



25. (A) Draw the structure of the major monohalo product for each of the following reaction: (1+1+1=3)

(a) 
$$Cl$$
  $CH_2 - CH_3$   $Br_2$ ,  $Heat$  ?

(b) 
$$CH_3$$
 + HBr  $\longrightarrow$  ?

(c) 
$$HO - H_2C$$
  $\longrightarrow$   $OH$   $\longrightarrow$   $PCl$ ,  $PCl$ ,

- $\mathbf{OR}$
- (B) How do you convert:  $(3 \times 1 = 3)$ 
  - (a) Chlorobenzene to biphenyl
  - (b) Propene to 1-Iodopropane
  - (c) 2-bromobutane to but-2-ene.
- 26. The elements of 3d transition series are given as: (1 + 1 + 1 = 3)

Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn

Answer the following:

- (a) Copper has exceptionally positive  $E_{M^{2+}\!/\!M}^{\circ}$  value, why ?
- (b) Which element is a strong reducing agent in +2 oxidation state and why?
- (c)  $Zn^{2+}$  salts are colourless. Why?
- 27. (a) Arrange the following compounds in increasing order of their boiling point:  $(CH_3)_2NH, CH_3CH_2NH_2, CH_3CH_2OH.$ 
  - (b) Give plausible explanation for each of the following :
    - (i) Aromatic primary amines cannot be prepared by Gabriel Phthalimide synthesis.
    - (ii) Amides are less basic than amines.



# 28. निम्नलिखित शब्दों को परिभाषित करें :

- (a) प्राकृत प्रोटीन
- (b) न्यूक्लियोटाइड
- (c) आवश्यक ऐमीनो अम्ल

#### खण्ड – घ

निम्नलिखित प्रश्न प्रकरण आधारित प्रश्न है । परिच्छेद को ध्यानपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए ।

29. रासायनिक अभिक्रिया का वेग या तो प्रति इकाई समय में अभिकारक की सांद्रता में कमी या उत्पाद की सांद्रता में वृद्धि के रूप में व्यक्त किया जाता है। अभिक्रिया का वेग अभिकारकों की प्रकृति, अभिकारकों की सांद्रता, तापमान, उत्प्रेरक की उपस्थिति, अभिकारकों के पृष्ठीय क्षेत्रफल और प्रकाश की उपस्थिति पर निर्भर करता है। अभिक्रिया का वेग अभिकारक की सांद्रता से सीधे संबंधित होता है। वेग नियम बताता है कि अभिक्रिया का वेग सांद्रता पदों पर निर्भर करता है जिस पर अभिक्रिया का वेग वास्तव में निर्भर करता है, जैसा कि प्रयोगात्मक रूप से देखा गया है। वेग नियम अभिव्यक्ति में अभिकारकों की सांद्रता की घातों के योग को अभिक्रिया की कोटि कहा जाता है जबिक एक प्राथमिक अभिक्रिया में भाग लेने वाली स्पीशीज़ की संख्या जो रासायनिक अभिक्रिया सम्पन्न करने के लिए एक साथ संघट्ट करती है, अभिक्रिया की आण्विकता कहलाती है।

निम्न प्रश्नों के उत्तर दीजिए:

(a) (i) वेग निर्धारक पद क्या है ?

(1+1=2)

1

1

3

- (ii) जटिल अभिक्रिया को परिभाषित कीजिए।
- (b) वेग स्थिरांक पर ताप का क्या प्रभाव पडता है ?

अथवा

- (b) आण्विकता केवल प्राथमिक अभिक्रियाओं के लिए ही क्यों लागू होती है जबिक कोटि प्राथमिक और जटिल अभिक्रिया दोनों के लिए लागू होती हैं ?
- (c) अणु X का Y में रूपांतरण द्वितीय कोटि की बलगतिकी के अनुरूप होता है । यदि X की सांद्रता तीन गुनी कर दी जाए तो Y के निर्माण होने के वेग पर क्या प्रभाव पड़ेगा ?

~ 16 ~

56/1/3



#### 28. Define the following terms:

- (a) Native protein
- (b) Nucleotide
- (c) Essential amino acid

#### SECTION - D

The following questions are case based questions. Read the passage carefully and answer the questions that follow.

29. The rate of a chemical reaction is expressed either in terms of decrease in the concentration of reactants or increase in the concentration of a product per unit time. Rate of the reaction depends upon the nature of reactants, concentration of reactants, temperature, presence of catalyst, surface area of the reactants and presence of light. Rate of reaction is directly related to the concentration of reactant. Rate law states that the rate of reaction depends upon the concentration terms on which the rate of reaction actually depends, as observed experimentally. The sum of powers of the concentration of the reactants in the Rate law expression is called order of reaction while the number of reacting species taking part in an elementary reaction which must collide simultaneously in order to bring about a chemical reaction is called molecularity of the reaction.

Answer the following questions:

- (a) (i) What is a rate determining step?
- (1+1=2)

1

1

1

- (ii) Define complex reaction.
- (b) What is the effect of temperature on the rate constant of a reaction?

#### OR

- (b) Why is molecularity applicable only for elementary reactions whereas order is applicable for elementary as well as complex reactions?
- (c) The conversion of molecule X to Y follows second order kinetics. If concentration of X is increased 3 times, how will it affect the rate of formation of Y?

 $\overline{\sim 17 \sim}$  P.T.O.

3



30. बेन्जीन वलय से जुड़े OH समूह के प्रबल सिक्रयण प्रभाव के कारण फ़ीनॉल आसानी से इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाएँ देते हैं । चूँकि OH समूह o— और p— स्थितियों पर इलेक्ट्रॉन घनत्व को अधिक बढ़ाता है, इसिलए OH समूह ऑथों और पैरा निर्देशक होता है । राइमर-टीमन इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रिया के उदाहरण में से एक है । जिसके द्वारा फ़ीनॉल की एरोमैटिक वलय में हाइड्रॉक्सिल समूह की ऑथों स्थिति पर एल्डिहाइड समूह प्रवेश कर जाता है । यह एक सामान्य विधि है जो फ़ीनॉलों के ऑथों फार्मिलन के लिए प्रयुक्त की जाती है ।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

(a) क्या होता है जब फ़ीनॉल निम्न से अभिक्रिया करता है ?

 $\mathbf{2}$ 

- (i)  $Br_2/CS_2$
- (ii) सांद्र HNO3
- (b) फ़ीनॉल का प्रोटॉनन आसानी से क्यों नहीं होता है ?

1

(c) कौन सा एक प्रबल अम्ल है : फ़ीनॉल अथवा क्रीसॉल ? कारण दीजिए ।

1

#### अथवा

(c) राइमर-टीमन अभिक्रिया में बनने वाले उत्पाद का IUPAC नाम लिखें।

1

## खण्ड – ङ

31. (A) (a) निम्नलिखित रूपांतरण करें :

(2+3=5)

- (i) एथेनेल से ब्यूट-2-ईनैल
- (ii) प्रोपेनोइक अम्ल से एथेन
- (b) आण्विक सूत्र  $C_5H_{10}$  वाला एक एल्कीन A ओज़ोनी अपघटन पर दो यौगिकों B और C का मिश्रण देता है । यौगिक B धनात्मक फेलिंग परीक्षण देता है और आयोडीन और NaOH विलयन के साथ भी अभिक्रिया करता है । यौगिक C फेलिंग परीक्षण नहीं देता है लेकिन आयोडोफार्म बनाता है । यौगिक A, B और C की पहचान कीजिए ।

अथवा

~ 18 ~

56/1/3



30. Phenols undergo electrophilic substitution reactions readily due to the strong activating effect of OH group attached to the benzene ring. Since, the OH group increases the electron density more to o— and p— positions therefore OH group is ortho, para-directing. Reimer-Tiemann reaction is one of the examples of aldehyde group being introduced on the aromatic ring of phenol, ortho to the hydroxyl group. This is a general method used for the ortho-formylation of phenols.

Answer the following questions:

- (a) What happens when phenol reacts with
  - (i)  $Br_2/CS_2$
  - (ii) Conc. HNO<sub>3</sub>
- (b) Why phenol does not undergo protonation readily?
- (c) Which is a stronger acid phenol or cresol? Give reason.

OR

(c) Write the IUPAC name of the product formed in the Reimer-Tiemann reaction.

#### SECTION - E

31. (A) (a) Carry out the following conversions:

(2 + 3 = 5)

2

1

1

1

- (i) Ethanal to But-2-enal
- (ii) Propanoic acid to ethane
- (b) An alkene A with molecular formula  $C_5H_{10}$  on ozonolysis gives a mixture of two compounds B and C. Compound B gives positive Fehling test and also reacts with iodine and NaOH solution. Compound C does not give Fehling solution test but forms iodoform. Identify the compounds A, B and C.

OR



31. (B) एक कार्बनिक यौगिक (A) (आण्विक सूत्र  $C_8H_{16}O_2$ ) को तनु सल्फ्यूरिक अम्ल के साथ जल अपघटन करके कार्बोक्सिलिक अम्ल (B) और एल्कोहॉल (C) प्राप्त हुआ । (C) का क्रोमिक अम्ल के साथ ऑक्सीकरण करने पर (B) बनता है । निर्जलीकरण पर (C) ब्यूट-1-ईन देता है । (A), (B) और (C) को पहचानिए तथा सम्मिलिति अभिक्रियाओं के लिए रासायनिक समीकरण लिखिए ।

32. (A) निम्नलिखित संकुल आयनों के लिए संकरण का प्रकार, आकार और चुंबकीय गुण की व्याख्या कीजिए :  $(2\frac{1}{2} \times 2 = 5)$ 

- (a)  $[\text{Fe}(\text{H}_2\text{O})_6]^{2+}$
- (b)  $[NiCl_4]^{2-}$

(परमाणु संख्या : Fe = 26, Ni = 28)

#### अथवा

32. (B) (a) निम्नलिखित के IUPAC नाम लिखिए:

(3+2=5)

5

- $\mathrm{(i)} \quad [\mathrm{Co(H_2O)(CN)(en)_2}]^{2+}$
- (ii)  $[PtCl_4]^{2-}$
- (iii)  $[Cr(NH_3)_4Cl(ONO)]^+$
- (b) स्पेक्ट्रोरासायनिक श्रेणी क्या है ? प्रबल क्षेत्र लिगैन्ड तथा दुर्बल क्षेत्र लिगैन्ड में अंतर लिखिए।
- 33. (A) (a) निम्नलिखित के लिए सेल अभिक्रिया लिखिए तथा  $298~\mathrm{K}$  पर सेल का  $\mathrm{e.m.f.}$  (3 + 2 = 5)

Sn(s) | Sn^2+ (0.004 M) | | H^+ (0.02 M) | H\_2(g) (1 Bar) | Pt (s)

(दिया गया है : 
$$E_{\mathrm{Sn}^{2+}/\mathrm{Sn}}^{\circ}$$
 =  $-0.14~\mathrm{V},~E_{\mathrm{H}+|\mathrm{H}_{2}(\mathrm{g}),~\mathrm{Pt}}^{\circ}$  =  $0.00\mathrm{V})$ 

56/1/3



31. (B) An organic compound (A) (molecular formula  $C_8H_{16}O_2$ ) was hydrolysed with dilute sulphuric acid to get a carboxylic acid (B) and an alcohol (C). Oxidation of (C) with chromic acid produced (B). (C) on dehydration gives But-l-ene. Identify (A), (B) and (C) and write chemical equations for the reactions involved.

5

- 32. (A) In the following complex ions, explain the type of hybridisation, shape and magnetic property:  $(2\frac{1}{2} \times 2 = 5)$ 
  - (a)  $[\text{Fe}(\text{H}_2\text{O})_6]^{2+}$
  - (b)  $[NiCl_4]^{2-}$

(At. Nos. : Fe = 26, Ni = 28)

OR

32. (B) (a) Write IUPAC names of the following:

(3+2=5)

- $\mathrm{(i)} \quad \mathrm{[Co(H_2O)(CN)(en)_2]^{2+}}$
- (ii)  $[PtCl_4]^{2-}$
- (iii)  $[Cr(NH_3)_4Cl(ONO)]^+$
- (b) What is spectrochemical series? Write the difference between a strong field ligand and a weak field ligand.
- 33. (A) Write the cell reaction and calculate the e.m.f. of the following cell at 298 K: (3 + 2 = 5)

 $\rm Sn(s)\,|\,Sn^{2+}\,(0.004\;M)\,|\,|\,H^{+}\,(0.02\;M)\,|\,H_{2}(g)\,(1\;Bar)\,|\,Pt\,(s)$ 

(Given :  $E_{Sn^{2+}/Sn}^{\circ} = -0.14 \text{ V}, E_{H+|H_2(g), Pt}^{\circ} = 0.00 \text{V}$ )

56/1/3 ~ 21 ~ P.T.O.



- (b) निम्नलिखित के कारण बताइए:
  - (i)  ${
    m E}^\circ$  मानों के आधार पर,  ${
    m O}_2$  गैस एनोड पर मुक्त होनी चाहिए, लेकिन जलीय  ${
    m NaC}l$  के विद्युत अपघटन में  ${
    m C}l_2$  गैस मुक्त होती है ।
  - (ii) तनुकरण पर  $\mathrm{CH_{3}COOH}$  की चालकता कम हो जाती है।

#### अथवा

- 33. (B) (a) लेड स्टोरेज बैटरी के उपयोग के दौरान होने वाली ऐनोड और कैथोड अभिक्रियाएँ और समग्र सेल अभिक्रिया लिखें। (2 + 3 = 5)
  - (b)  $0.01~{
    m M}~{
    m K_2Cr_2O_7(aq)},~0.01~{
    m M}~{
    m Cr^{3+}(aq)}$  और  $1.0\times10^{-4}~{
    m M}~{
    m H^+(aq)}$  युक्त अर्थ सेल के लिए विभव की गणना करें ।

अर्ध-सेल अभिक्रिया है:

$$\mathrm{Cr_2O_7^{2-}(aq)} + 14\mathrm{H^+(aq)} + 6\mathrm{e^-} {\longrightarrow} 2\mathrm{Cr^{3+}(aq)} + 7\mathrm{H_2O}(\mathit{l})$$

और मानक इलेक्ट्रोड विभव  $\mathrm{E}^\circ = 1.33~\mathrm{V}$  दिया गया है ।

[दिया गया है :  $\log 10 = 1$ ]



- (b) Account for the following;
  - (i) On the basis of E° values,  $O_2$  gas should be liberated at anode but it is  $Cl_2$  gas which is liberated in the electrolysis of aqueous NaCl.
  - (ii) Conductivity of CH<sub>3</sub>COOH decreases on dilution.

OR

- 33. (B) (a) Write the anode and cathode reactions and the overall cell reaction occurring in a lead storage battery during its use. (2 + 3 = 5)
  - (b) Calculate the potential for half-cell containing 0.01 M  $K_2Cr_2O_7(aq),~0.01~M~Cr^{3+}~(aq)~and~1.0\times 10^{-4}~M~H^+(aq).$

The half cell reaction is

$$\mathrm{Cr_2O_7^{2-}(aq)} + 14\mathrm{H^+(aq)} + 6\mathrm{e^-} {\longrightarrow} 2\mathrm{Cr^{3+}(aq)} + 7\mathrm{H_2O}(\mathit{l})$$

and the standard electrode potential is given as  $E^{\circ} = 1.33 \text{ V}$ .

[Given: log 10 = 1]



**56/1/3 730-3** 

~ 24 ~

**^** 

# Marking Scheme Strictly Confidential

(For Internal and Restricted use only)
Senior School Certificate Examination, 2024-25
SUBJECT NAME CHEMISTRY (Theory) -043

(Q.P.CODE 56/1/3) MM: 70

## **General Instructions: -**

You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.

"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."

Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.

The Marking scheme carries only suggested value points for the answers

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.

Evaluators will mark( $\sqrt{\ }$ ) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right ( $\sqrt{\ }$ ) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.

If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.

If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".

No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

A full scale of marks \_\_\_\_\_(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.

Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on an answer.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying/not same.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)

Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.

Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.

Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.

The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

## **MARKING SCHEME 2024-25**

# CHEMISTRY (Theory)- 043

MM: 70

QP CODE 56/1/3

| Q. No | Value points                                                                                           | Mark  |
|-------|--------------------------------------------------------------------------------------------------------|-------|
|       | SECTION A                                                                                              |       |
| 1     | (B)                                                                                                    | 1     |
| 2     | (B)                                                                                                    | 1     |
| 3     | (A)                                                                                                    | 1     |
| 4     | (C)                                                                                                    | 1     |
| 5     | (C)                                                                                                    | 1     |
| 6     | (B)                                                                                                    | 1     |
| 7     | (A)                                                                                                    | 1     |
| 8     | (D)                                                                                                    | 1     |
| 9     | (A)                                                                                                    | 1     |
| 10    | (D)                                                                                                    | 1     |
| 11    | (D)                                                                                                    | 1     |
| 12    | (C)                                                                                                    | 1     |
| 13    | (B)                                                                                                    | 1     |
| 14    | (C)                                                                                                    | 1     |
| 15    | (B)                                                                                                    | 1     |
| 16    | (A)                                                                                                    | 1     |
|       | SECTION B                                                                                              |       |
| 17    | Less reactive,                                                                                         | 1     |
|       | The carbon atom of the carbonyl group of benzaldehyde is less electrophilic than carbon                |       |
|       | atom of the carbonyl group present in propanal./ The polarity of the carbonyl group is                 | 1     |
|       | reduced in benzaldehyde due to resonance.                                                              |       |
| 18    | (a) $8MnO_4^- + 3S_2O_3^{2-} + H_2O \longrightarrow 8MnO_2 + 6SO_4^{2-} + 2OH^-$                       | 1     |
|       | (b) $Cr_2O_7^{2-} + 3 Sn^{2+} + 14 H^+ \rightarrow 2Cr^{3+} + 3 Sn^{4+} + 7H_2O$                       | 1     |
| 19    | (A) (a) Due to high pressure inside the pressure cooker, higher is the boiling point and               | 1     |
|       | faster is the cooking.                                                                                 |       |
|       | (b)                                                                                                    |       |
|       | Negative deviation                                                                                     | 1/2   |
|       | Temperature increases.                                                                                 | 1/2   |
|       | OR                                                                                                     |       |
| 19    | (B)                                                                                                    |       |
|       | Same composition in liquid and in vapour phase and boil at a constant temperature.                     | 1     |
|       | Maximum Boiling Azeotrope                                                                              | 1/2   |
|       | 68% HNO <sub>3</sub> + 32% H <sub>2</sub> O (Or any other correct example) (Percentage can be ignored) | 1/2   |
| 20    | (a) $A = CH_3CH_2CN$ ; $B = CH_3CH_2CH_2NH_2$                                                          | ½ x 4 |
|       | (b) $A = C_6 H_5 N_2^+ Cl_3^-$ ;                                                                       |       |
|       |                                                                                                        |       |
|       | \N=N\(\)_NH <sub>2</sub>                                                                               |       |
|       | B =                                                                                                    |       |
| 21    | a)Glucose + Fructose / Chemical equation                                                               | 1     |
|       | b) Glucose + Galactose / Chemical equation                                                             | 1     |
|       | SECTION C                                                                                              |       |
| 22    | 5_6                                                                                                    | 1     |
|       | $p_{CO2} = K_H \chi_{CO2}$                                                                             | 1/2   |
|       | $K_{H} = 1.67 \times 10^{8}  \text{Pa}$                                                                |       |
|       | $p_{CO2} = 2.53 \times 10^5  \text{Pa}$                                                                |       |
|       |                                                                                                        |       |

|     | $\chi_{CO2} = p_{CO2} / K_H$                                                                                                                 |        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|--------|
|     | $=\frac{2.53\times10^5}{1.67\times10^8}$                                                                                                     |        |
|     | $=1.51 \times 10^{-3}$                                                                                                                       | 1      |
|     | $\chi_{CO2} = \frac{n_{CO2}}{n_{H20}}$                                                                                                       | 1/2    |
|     | $n_{H2O} = \frac{n_{H2O}}{1000}$ $n_{H2O} = \frac{1}{1000}$ $n_{H2O} = \frac{1}{1000}$ $n_{H2O} = \frac{1}{1000}$ $n_{H2O} = \frac{1}{1000}$ | 1/2    |
|     | n <sub>CO2</sub> = 27.78 X 1.51 X 10 <sup>-3</sup> moles                                                                                     | /2     |
|     | $= 42.0 \times 10^{-3} \text{ mol} = 0.042 \text{ moles}$                                                                                    | 1/2    |
| 23  | E°Cell= E°cathode=E°anode                                                                                                                    |        |
|     | = -0.40-(-0.74)                                                                                                                              |        |
|     | = +0.34 V                                                                                                                                    | 1/2    |
|     | $\triangle G^0 = -nF E^0_{cell}$                                                                                                             | 1/2    |
|     | = -(6 x 96500 X 0.34) J                                                                                                                      |        |
|     | = - 196860 J/ mol                                                                                                                            | 1      |
|     | $\triangle G^0$ =-2.303 RT logKc                                                                                                             | 1/2    |
|     | log Kc = (196860)/ 2.303 x 8.314x298                                                                                                         | 1/2    |
|     | =34.576 (or any other suitable method)                                                                                                       | /2     |
| 24  | $\log K = -E_a/2.303 RT$                                                                                                                     |        |
|     |                                                                                                                                              |        |
|     | $\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[ \frac{T_2 - T_1}{T_1 T_2} \right]$                                                         |        |
|     | $k_1 = 2.303R = T_1T_2$                                                                                                                      | 1      |
|     |                                                                                                                                              |        |
|     | $\log \frac{4}{1} = \frac{Ea}{2.303 \times 8.314} \frac{[313 - 293]}{[313 \times 293]}$                                                      |        |
|     | $\log 4 = \frac{Ea}{19.147} \frac{[20]}{[313 \times 293]}$                                                                                   | 1      |
|     | 19.147 [313 ×293]                                                                                                                            |        |
|     | $E_{a} = \frac{0.602 \times 19.147 \times 313 \times 293}{20}$                                                                               |        |
|     | =52850 J mol <sup>-1</sup> / 52.85 kJ mol <sup>-1</sup>                                                                                      |        |
|     |                                                                                                                                              | 1      |
| 25  | (A) (a)                                                                                                                                      |        |
|     | Br                                                                                                                                           | 1      |
|     | CH <sub>3</sub>                                                                                                                              | 1      |
|     |                                                                                                                                              |        |
|     | (b)                                                                                                                                          |        |
|     | (U)                                                                                                                                          |        |
|     | CH.                                                                                                                                          |        |
|     | - Grig                                                                                                                                       | 1      |
|     |                                                                                                                                              |        |
|     | (c)                                                                                                                                          |        |
|     |                                                                                                                                              |        |
|     |                                                                                                                                              |        |
|     | но                                                                                                                                           |        |
|     |                                                                                                                                              | 1      |
| 25  |                                                                                                                                              |        |
| 26. | (a) Its high $^{\Delta_{ m a}}\!H^{ m o}$ and low $^{\Delta_{ m hyd}}\!H^{ m o}$ .                                                           | 1      |
|     | (b)                                                                                                                                          | 1/     |
|     | Cr                                                                                                                                           | 1/2    |
|     | Cr <sup>3+</sup> (d <sup>4</sup> to d <sup>3</sup> ) / stable half-filled t <sub>2g</sub> level                                              | ½<br>1 |
|     | (c) Fully-filled d-orbitals hence no d-d transition / due to the absence of unpaired electron.                                               | 1      |
| 27  | (a) (CH <sub>3</sub> ) <sub>2</sub> NH < CH <sub>3</sub> CH <sub>2</sub> NH <sub>2</sub> < CH <sub>3</sub> CH <sub>2</sub> OH                | 1      |
|     | (b) (i) aromatic halides do not undergo nucleophilic substitution with the anion formed by                                                   | 1      |
|     | phthalimide.                                                                                                                                 |        |
|     |                                                                                                                                              |        |
|     |                                                                                                                                              | 1      |

|    | (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|    | $N = C - CH_3$ $\longrightarrow$ $N = C - CH_3$ /Due to resonance the lone pair on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1      |
|    | nitrogen is less available for donation/ Due to +R effect lone pair of electrons is not easily available on N of -NH $_2$ group/ Due to -R effect of carbonyl group, electron density on N atom of -NH $_2$ group decreases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| 28 | <ul> <li>a) Protein found in a biological system with a unique three dimensional structure and biological activity.</li> <li>b)Nitrogenous base + Pentose Sugar + Phosphate / a unit formed when a nucleoside is linked</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1      |
|    | with phosphate. c)Those acids which cannot be synthesized in the body and must be obtained through diet.  SECTION D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1      |
| 29 | (a) (i) Slowest step.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1      |
|    | (ii) Series of elementary reaction/ Reactions involving two or more steps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1      |
|    | (b) Increases with increase in temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1      |
|    | OR  (b) Molecularity is defined only for elementary reactions whereas order is experimentally determined hence applicable for both / Because molecularity of each elementary reaction in complex reaction may be different and hence meaningless for overall complex reaction whereas order of a complex reaction is experimentally determined by the slowest step in its mechanism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1      |
|    | and is therefore applicable for both.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|    | (c) 9 times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      |
| 30 | (a) (i) $ \begin{array}{cccc} OH & OH \\ & Br_2 \text{ in } CS_2 \\ \hline & 273 \text{ K} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1      |
|    | (ii) OH OH NO <sub>2</sub> O <sub>2</sub> N NO <sub>2</sub> O <sub>2</sub> N O <sub>2</sub> N O <sub>2</sub> N O <sub>3</sub> O <sub>2</sub> N O <sub>3</sub> O <sub>2</sub> N O <sub>3</sub> O <sub>3</sub> O <sub>3</sub> O <sub>4</sub> O <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1      |
|    | NO <sub>2</sub> / 2,4,6-Trinitrophenol / Picric acid is formed. b)Due to resonance, the lone pair of electrons on oxygen is not easily available for protonation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1      |
|    | c) Phenol Due to electron releasing effect (+I effect) of methyl group/ phenoxide ion formed is less stable in cresol.  OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ½<br>½ |
|    | (c) 2-Hydroxybenzaldehyde / 2- Hydroxybenzenecarbaldehyde.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1      |
|    | SECTION E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      |
| 31 | (A) (a) (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|    | $O \longrightarrow OH$ $OH \longrightarrow CH_3$ $OH \longrightarrow CH$ | 1      |
|    | CH₃CH₂COOH + NaOH + CaO + heat → CH₃-CH₃ (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1      |
|    | (b) A = (CH <sub>3</sub> ) <sub>2</sub> CH=CHCH <sub>3</sub> / 2-Methylbut-2-ene<br>B = CH <sub>3</sub> CHO / Ethanal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1      |

|    | C = CH₃COCH₃/ Acetone/ Propanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1         |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 31 | A= C₃H <sub>7</sub> COOC₄H <sub>9</sub> / Butyl butanoate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1         |
|    | B= C₃H <sub>7</sub> COOH / Butanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2       |
|    | C= C <sub>4</sub> H <sub>9</sub> OH / Butan-1-ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2       |
|    | $C_3H_7COOC_4H_9+ dil.H_2SO_4 \rightarrow C_3H_7COOH + C_4H_9OH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1         |
|    | $C_4H_9OH + Conc. Sulphuric acid + Heat \rightarrow CH_3CH_2CH=CH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         |
|    | $C_4H_9OH \xrightarrow{\text{Cr03}/\text{CH}_3\text{COOH}} C_3H_7COOH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1         |
| 32 | A) a)  Formation of   fte(H <sub>2</sub> O <sub>0</sub> ) <sub>0</sub>   <sup>2+</sup>   fttt   fttt   ftt   ftt | 1<br>½ ×3 |
|    | [NiCl,]*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1         |
|    | sp³, tetrahedral , paramagnetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ½ ×3      |
|    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 32 | B) a) (i) Aquacyanidobis(ethane-1,2-diamine) cobalt(III) ion (ii) Tetrachloridoplatinate(II) ion (iii) Tetraamminechloridonitrito-O-chromium(III)ion b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1     |
|    | The arrangement of ligands in increasing order of field strength is called spectrochemical series /it is an experimentally determined series based on the absorption of light by complexes with different ligands.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1         |
|    | $\Delta_{o}$ < P, weak field ligand; $\Delta_{o}$ > P, strong field ligand / Weak ligand form high spin complexes whereas strong field form low spin complexes. (or any other)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1         |
| 33 | (A) (a) The cell reaction is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
|    | $Sn(s)+2H^+(aq) \rightarrow Sn^{2+}(aq)+H_2(g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1         |
|    | $E_{Cell} = (E^o_c - E^o_a) - \frac{0.059}{2} \log \frac{[Sn^{2+}]}{[H^+]^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1         |
|    | $= [(0) - (-0.14)] - \frac{0.059}{2} \log \frac{0.004}{(0.02)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|    | = 0.14 - 0.0295 log 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|    | = 0.1105 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1         |
|    | b) (i) overpotential of O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1         |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
|    | (ii) Number of ions carrying current per unit volume decreases on dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1         |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |

|    | OR                                                                                                                                        |     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 33 | B) a) At anode:                                                                                                                           |     |
|    | $Pb+SO_4^{-2} \rightarrow PbSO_4+2e-$                                                                                                     | 1/2 |
|    | At cathode:                                                                                                                               |     |
|    | $PbO_2 + SO_4^{-2} + 4H^+ + 2e^- \rightarrow PbSO_4 + 2H_2O$                                                                              | 1/2 |
|    | Overall reaction:                                                                                                                         |     |
|    | Pb+PbO <sub>2</sub> +2 SO <sub>4</sub> <sup>-2</sup> +4H <sup>+</sup> →2PbSO <sub>4</sub> +2H <sub>2</sub> O                              | 1   |
|    | b)                                                                                                                                        |     |
|    | $E_{Cell} = E^{\circ}_{Cell} - \frac{0.059}{n} \log \left[ \frac{[\mathit{Cr}^{3+}]^2}{[\mathit{Cr}^207^{2-}][\mathit{H}+]^{14}} \right]$ | 1   |
|    | Ecell = $1.33 - \frac{0.059}{6} \log (10^{-2})^2 / (10^{-2}) (1 \times 10^{-4})^{14}$                                                     | 1   |
|    | $=1.33-\frac{0.059}{6}$ (54) log 10                                                                                                       |     |
|    | $= 1.33 - 0.059 \times 9$                                                                                                                 |     |
|    | = 1.33 – 0.531                                                                                                                            | 1   |
|    | = 0.799 V                                                                                                                                 | 1   |

# अंना योजना MARKING SCHEME 2024-25

# २ माया (नेजान (सं, प्रातिक) CHEMISTRY (Theory)- 043 QP CODE 56/1/3

MM: 70

| Q. No | म्ला । लंद                                                                                                                                                                                                                                | 31di |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|       |                                                                                                                                                                                                                                           |      |
| 1     | (B)                                                                                                                                                                                                                                       | 1    |
| 2     | (B)                                                                                                                                                                                                                                       | 1    |
| 3     | (A)                                                                                                                                                                                                                                       | 1    |
| 4     | (C)                                                                                                                                                                                                                                       | 1    |
| 5     | (C)                                                                                                                                                                                                                                       | 1    |
| 6     | (B)                                                                                                                                                                                                                                       | 1    |
| 7     | (A)                                                                                                                                                                                                                                       | 1    |
| 8     | (D)                                                                                                                                                                                                                                       | 1    |
| 9     | (A)                                                                                                                                                                                                                                       | 1    |
| 10    | (D)                                                                                                                                                                                                                                       | 1    |
| 11    | (D)                                                                                                                                                                                                                                       | 1    |
| 12    | (C)                                                                                                                                                                                                                                       | 1    |
| 13    | (B)                                                                                                                                                                                                                                       | 1    |
| 14    | (C)                                                                                                                                                                                                                                       | 1    |
| 15    | (B)                                                                                                                                                                                                                                       | 1    |
| 16    | (A)                                                                                                                                                                                                                                       | 1    |
| 17    | • क्रिंग अभिन्नियामील<br>• क्रेन्डी लिड्डाइँउ के कार्कीनल संमुह का कार्बन<br>परमाण प्राचित्रल के कार्कीनल समूह की<br>दुलगा के काम इलेक्ट्रानरामी होता है।<br>विन्डी लिड्डाइँउ के अनुनार के कारण<br>कार्बीनल समूह की धुवता काम हो जाती है। | 1    |
| 18    | (a) $8MnO_4^- + 3S_2O_3^{2-} + H_2O \longrightarrow 8MnO_2 + 6SO_4^{2-} + 2OH^-$<br>(b) $Cr_2O_7^{2-} + 3 Sn^{2+} + 14 H^+ \rightarrow 2Cr^{3+} + 3 Sn^{4+} + 7H_2O$                                                                      | 1    |
| 19    | (A) (a) प्रेशर कुकार के अंदर उच्च हार के कारण,<br>उच्चतर क्वथनाक के कारण भोजन का पक्तना<br>तेरी के होता है।                                                                                                                               |      |
|       |                                                                                                                                                                                                                                           |      |

|    | (b) = 72 v11 (na) (2 4 M1                                                                                      | 1        |
|----|----------------------------------------------------------------------------------------------------------------|----------|
|    | • ताप में ब्राहि                                                                                               | 2        |
|    |                                                                                                                | 2        |
|    | 00 23 O(d):                                                                                                    |          |
| 19 | <u>3194</u> , 1                                                                                                |          |
|    | (B) • इव व वाष्प प्रावस्था में संपर्ग माग<br>होता है तया यह रक स्त्रिर ताप पर उन्नलते हैं।                     |          |
|    |                                                                                                                |          |
|    | • अधिकतम् ववधनां की स्थिरववाधी                                                                                 | 1 2      |
|    | · 68% HNO3 + 32% H2<br>(31 EVA) ATÉ 3124 34/6(U))                                                              | 1        |
|    | (प्रतिशत की उपेशा की जा सकते हैं)                                                                              |          |
| 20 | (a) $A = CH_3CH_2CN$ ; $B = CH_3CH_2 CH_2NH_2$<br>(b) $A = C_6H_5N^+_2Cl^-$ ;                                  | 1/2 x 4  |
|    | B = N - N - N + N - N + N + N + N + N + N +                                                                    |          |
| 21 | (व) ग्लूकोस + फ्रक्टोन / रासामितक क्रामिन                                                                      | -1       |
|    | (b) वल्कीस + भेलेक्टोस / रासामितक अपि।क्रिया                                                                   | )        |
|    |                                                                                                                |          |
|    |                                                                                                                |          |
|    | २वण्ड ग                                                                                                        |          |
| 22 | $p_{CO2} = K_H \chi_{CO2}$ $K_H = 1.67 \times 10^8 \text{ Pa}$                                                 | 1/2      |
|    | $p_{CO2} = 2.53 \times 10^5 \text{ Pa}$<br>$\chi_{CO2} = p_{CO2} / K_H$                                        |          |
|    | $=\frac{2.53\times10^5}{1.67\times10^8}$                                                                       | 1        |
|    | $=1.51 \times 10^{-3}$                                                                                         |          |
|    | $\chi_{CO2} = \frac{n_{CO2}}{n_{H20}}$ $n_{H2O} = 500/18 = 27.78 $                                             | 1/2      |
|    | n <sub>CO2</sub> =27.78 X 1.51 X 10 <sup>-3</sup> moles                                                        | 1/2 1/2  |
| 23 | = 42.0 X 10 <sup>-3</sup> mol = 0.042 moles<br>E°c <sub>ell</sub> = E° <sub>cathode</sub> -E° <sub>anode</sub> | /2       |
|    | = -0.40-(-0.74)                                                                                                | 1/2      |
| L  |                                                                                                                | <u> </u> |


|     |                                                                                                                                                            | <del></del> |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|     | $= +0.34 \text{ V}$ $\triangle G^{0} = -\text{nF } E^{0}_{\text{cell}}$                                                                                    | 1/2         |
|     | $= -(6 \times 96500 \times 0.34) \text{ J}$                                                                                                                | 1           |
|     | = - 196860 J/ mol                                                                                                                                          | 1/2         |
|     | $\triangle G^0$ =-2.303 RT logKc                                                                                                                           | 1,          |
|     | log Kc = (196860)/ 2.303 x 8.314x298 (3/Ual 4) \$ 3-72 3 4 4 4 7 10 101)                                                                                   | 1/2         |
|     | =34.576                                                                                                                                                    |             |
| 24  | $\log K = -E_a/2.303 RT$                                                                                                                                   |             |
|     | $k_0 = E - [T_0 - T_1]$                                                                                                                                    |             |
|     | $\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left  \frac{T_2 - T_1}{T_1 T_2} \right $                                                                       | 1           |
|     |                                                                                                                                                            |             |
|     | $\log \frac{4}{1} = \frac{Ea}{2.303 \times 8.314} \frac{[313 - 293]}{[313 \times 293]}$                                                                    |             |
|     | $\log 4 = \frac{Ea}{19.147} \frac{[20]}{[313 \times 293]}$                                                                                                 | 1           |
|     | $E_a = \frac{0.602 \times 19.147 \times 313 \times 293}{1.313 \times 10^{-3}}$                                                                             |             |
|     | 20                                                                                                                                                         |             |
|     | =52850 J mol <sup>-1</sup> / 52.85 kJ mol <sup>-1</sup>                                                                                                    | 1           |
| 25  | (A) (a)                                                                                                                                                    |             |
|     | Br                                                                                                                                                         | 1           |
|     | CH <sub>3</sub>                                                                                                                                            | *           |
|     | Cr                                                                                                                                                         |             |
|     | (b)                                                                                                                                                        |             |
|     | Sr ·                                                                                                                                                       |             |
|     | CH <sub>3</sub>                                                                                                                                            | 1           |
|     |                                                                                                                                                            |             |
|     | (c)                                                                                                                                                        |             |
|     | CI                                                                                                                                                         |             |
|     |                                                                                                                                                            |             |
|     | HO'                                                                                                                                                        | 1           |
|     |                                                                                                                                                            | ļ           |
| 26. | (a) 3 +1 +1 3 = 1 (A +1 31) (A +1 )                                                                                                                        |             |
|     | (a) 34th) 324 DaH 3112 1729 DAYAH                                                                                                                          | 1           |
|     | $oldsymbol{I}$                                                                                                                                             | 1           |
|     | 6. Cr 2+ (142, 13) / Equal 370 4130                                                                                                                        | 2           |
|     | · Cr 3+ ( d 4 d d 3) / + 211 27 27 27 27 27 27 27 27 27 27 27 27 27                                                                                        |             |
|     | /                                                                                                                                                          | 1           |
|     | t 29 FC/4                                                                                                                                                  |             |
|     | 29                                                                                                                                                         |             |
|     | (C) THE 2- 20 SIGHT SHIPLY THE 9-d                                                                                                                         | 1           |
|     | AN - 21/2 - 1/2/2 / 1/2/2                                                                                                                                  | '           |
|     | सकामण नहीं / अयुगालत इलेक्ट्रॉन का                                                                                                                         |             |
|     | अवस्थात के कारण                                                                                                                                            |             |
| 27  | (c) पूर्ण - भरित व - र्मिंसके , इसालिए काई d-d<br>संकामण नहीं / अंभुगलित इलेक्ट्रॉन की<br>अनुपार्स्मित के कारण ।<br>(a) (cH3)2NH < CH3 CH2NH2 < CH3 CH2 OH |             |
| 27  | (a) (C/13/2N/1 < C/13 e/12N/12 < C/13 C/12 O/1                                                                                                             |             |
|     |                                                                                                                                                            |             |
|     |                                                                                                                                                            |             |

| 28 | (b) (i) क्यों कि के लि हैलाइड क्रालिंगाइड में प्राष्ट्र<br>भूणायन के माम निर्मान मही मेर समते ।<br>(ii)  N=C-CH, \Rightarrow \n=C-CH, \/  अनुनाद के कारण नाइ होजन पर अवह भार्तित<br>होता है / + R प्रणाव के कारण, - NH2 क्षेत्र ह<br>के N पर असह भारित इलेक्स्न युगल आसानी<br>से उपलब्ध नहीं होता / कार्बिनेल समह के पे-प्रणाव<br>के जारण - NH2 समूह के N-परभाण, पर इलेक्स्न न<br>प्रान्त काम के ब्लाता है ।<br>(a) प्राकृत प्रोरीत ; भीतक निमाय में वास्त्र कार्ति<br>मिन्ना होती है।  (b) न्यू विल्झी टाइड : भाइस्ने जन सम्बन्ध सारक + पे-टोस मन्<br>न्या किसा होती है।  (c) आवश्यक रेमीनो अन्त : वे रोमीनो अन्त भी बारी<br>में में के बीहान नहीं हो स्वात तथा जिनको भी अन्त<br>में लेन आवश्यक है।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \ |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 29 | (a) (i) OH OH Br <sub>2</sub> in CS <sub>2</sub> Br + Br + Br / 2- \$\overline{\gamma} \text{ in)} | ) |

 $NO_2$  $O_2N$ Conc. HNO<sub>3</sub> NO2 / 2,4,6- ट्राइब्रोमो फ्रीगॅल / पिक्रिक अम्ल वनता है। पिक्रिक अम्ल वनता है। इसेक्ट्रॉन खुगल प्रोटोतन के लिए उनासानी हैं। (e) things 킾 • मिलिस सम्रह के इलेक्ट्रीन विमोन्त प्राव (+ I प्रमाव) के कारण / क्रीस्ताल में निर्मित भागवसाइड आग्रा कम स्थायी हाता है। (C) 2 - हाइड्रांक्सी बे न्डो लिंड हाइड /2 - हाइड्रांक्सी बेन्डीन कार्बिट्डाइड a) (1) सबसे मद पर (11) प्राथमिक उनिम क्रिया की अंखला / दे पा आधिक पदा वाली आता के पा b) तम के ब्रीत के साथ वह जाता है! Py 4d) पिर गांचित होते हैं जाबिक आँग किया की कोरि रक प्राक्षे गिक भागा है अतः दोते पर लागू होते हैं | अमेरिक ट्रांटिल अणि। क्रेमा के लिए प्रत्येक प्राक्षिक ओणि क्रिया क्रि अगाणिकता भिल्न होती है अतः ट्रांटिल अणि। क्रिया के लिए अगाणिकता का भोई अर्च नहीं है ज्ञानिक्र अपिल उन्ती क्रिया के लिए कोरि क्रियाविक की अवसे में पद की होती है, अतः दोनों पद जीग्र इसी है। नी गुना 101UZ (A) (a) (i) 31 1  $_{2\text{CH}_{3}}$   $\stackrel{||}{\text{C}}$   $\stackrel{\text{OH}^{-}}{\text{C}}$   $\stackrel{\text{OH}^{-}}{\text{CH}_{3}}$   $\stackrel{\text{CH}}{\text{C}}$   $\stackrel{\text{CH}_{2}}{\text{C}}$   $\stackrel{\Delta}{\text{CH}_{3}}$   $\stackrel{\text{CH}_{3}}{\text{CH}_{3}}$   $\stackrel{\text{CH}_{3}}{$ 1 CH₃CH₂COOH + NaOH + CaO + heat → CH₃-CH₃

|    | (b) A = (CH <sub>3</sub> ) <sub>2</sub> CH=CHCH <sub>3</sub> / 12 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 1       |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|    | C = CH3COCH3/ असीर्या / प्राचिनोन                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1         |
|    | OR 'ু স্থামন                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| 31 | A= C3H7COOC4H9/ 002/2712002/27120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1         |
|    | B= C3H7COOH/ खेयू टे नोइक अम्ल                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2       |
|    | C= C4H9OH/ ट्यूरेन - 1 - अंल                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/2       |
|    | $C_3H_7COOC_4H_9+\sqrt{4}A_2SO_4 \rightarrow C_3H_7COOH + C_4H_9OH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         |
|    | C <sub>4</sub> H <sub>9</sub> OH + सांद्र सल्प्यूरिके अहं Heat → CH <sub>3</sub> CH <sub>2</sub> CH=CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         |
|    | $C_4H_9OH \xrightarrow{CrO3/CH3COOH} C_3H_7COOH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1         |
| 32 | A) a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ļ         |
| 32 | Fermation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1         |
|    | $sp^3d^2$ , $sp^3d^3$ , $sp^3d^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ½ ×3      |
|    | sp3d2, 3102 (n लकाय) अनु चुम्बर्काय                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
|    | INICLI <sup>®</sup> TATALTATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|    | sp3, चतु ० पत्रकीय , अनु सुम्बकीय                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1<br>½ ×3 |
|    | अभूबा                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
| 32 | (B) (A)(1) राजवासाइना यहा बिस (राषेत-1,2-डाइराजीत)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1         |
|    | (1) 221000112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|    | (ii) 37101<br>(iii) 37101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
|    | 221121111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1         |
|    | कार काता है। यह विकास के अवस्था के कार्य के कार के कार्य |           |
|    | क्रम की व्हावस्था की क्षेत्र की रासायानिक के भी                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|    | वाहा जाता है! यह विकार हिर्गित वार्ष संक्रा                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11        |
|    | है। प्रकाश के अवसी घण के आवार पर                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|    | प्रयोगात्मक रूप से निकारित भेगी है।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
|    | · Д. LP, зам क्षेत्र मिग्ड; Д. > Р,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|    | प्रबल भेत्र लिंगन्ड / दुर्जील लिंगन्ड                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1         |
|    | उच्य प्रमुण में कुल नगते हैं जब्बि प्रवल                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|    | क्षेत्रलिगड मिल प्रक्रण में कला बगाते हैं।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
|    | क्षेत्रलिगड मिला प्रयम्ण में कुल बगाते हैं।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 33 | (A) (a) सेल आं किया !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
|    | $Sn(s)+2H^{+}(aq)\rightarrow Sn^{2+}(aq)+H_{2}(g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | `         |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |

|    | $E_{Cell} = (E^{o}_{c} - E^{o}_{a}) - \frac{0.059}{2} \log \frac{[Sn^{2+}]}{[H^{+}]^{2}}$                                                                                                         | 1      |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|    | $= [(0) - (-0 \cdot 14)] - \frac{0.059}{2} log \frac{0.004}{(0.02)^2}$ $= 0.14 - 0.0295 log 10$ $= 0.1105 V$                                                                                      | 1      |
|    | b)(i) 02 का आधाविभव  (ii) तनुकारण करने पर प्रति इकाई आयत्त में                                                                                                                                    | 1      |
|    | विच्छत्यारा ले जाने वाले आयनों की संस्वा<br>घट जाती हैं!                                                                                                                                          | •      |
|    |                                                                                                                                                                                                   |        |
|    | ् । । ।                                                                                                                                                                                           |        |
| 22 | B) a) र्मोड पर :                                                                                                                                                                                  | 1      |
| 33 | Pb+SQ₄ <sup>-2</sup> →PbSO₄+2e-<br>केघोड़: पर ः                                                                                                                                                   | 1/2    |
|    | PbO <sub>2</sub> + SO <sub>4</sub> <sup>-2</sup> +4H <sup>+</sup> +2e-→PbSO <sub>4</sub> +2H <sub>2</sub> O<br>←H → → → → → → → → → → → → → → → → → → →                                           | ½<br>1 |
|    | Ecell = $E^{\circ}_{Cell} - \frac{0.059}{n} log \left[ \frac{[cr^{3+}]_2}{[cr207^{2-}][H+]^{14}} \right]$<br>Ecell = $1.33 - \frac{0.059}{6} log (10^{-2})^2 / (10^{-2}) (1 \times 10^{-4})^{14}$ | 1 1    |
|    | $= 1.33 - \frac{0.059}{6} (54) \log 10$ $= 1.33 - 0.059 \times 9$                                                                                                                                 | •      |
|    | = 1.33 - 0.531                                                                                                                                                                                    |        |
|    | = 0.799 V                                                                                                                                                                                         | 1      |
| L  |                                                                                                                                                                                                   | L      |

