

Series: ZYWX1

 $SET \sim 2$

रोल नं.

प्रश्न-पत्र कोड Q.P. Code **56/1/2**

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

नोट / NOTE

- $({
 m I})$ कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ ${f 23}$ हैं ।
 - Please check that this question paper contains 23 printed pages.
- ${
 m (II)}$ कृपया जाँच कर लें कि इस प्रश्न–पत्र में ${f 33}$ प्रश्न हैं ।
 - Please check that this question paper contains 33 questions.
- (III) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें। Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- $({
 m IV})$ कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथा स्थान पर प्रश्न का क्रमांक अवश्य लिखें।

Please write down the serial number of the question in the answerbook at the given place before attempting it.

- (V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अविध के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
 - 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धांतिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे

Time allowed: 3 hours

अधिकतम अंक : 70

Maximum Marks: 70

······

56/1/2 **730-2**

1

P.T.O.

सामान्य निर्देश:

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए:

- (i) इस प्रश्न-पत्र में 33 प्रश्न हैं। **सभी** प्रश्न अनिवार्य हैं।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है खण्ड **क, ख, ग, घ** तथा **ङ**।
- (iii) **खण्ड क –** प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) **खण्ड ख -** प्रश्न संख्या 17 से 21 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 2 अंकों का है ।
- (v) **खण्ड ग –** प्रश्न संख्या 22 से 28 तक लघू-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 3 अंकों का है।
- (vi) **खण्ड घ -** प्रश्न संख्या **29** तथा **30** प्रकरण आधारित प्रश्न हैं। प्रत्येक प्रश्न **4** अंकों का है।
- (vii) **खण्ड ङ –** प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड **क** के अतिरिक्त अन्य सभी खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग **वर्जित** है।

जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$c = 3 \times 10^8 \text{ m/s}$$

$$h = 6.63 \times 10^{-34} \text{ Js}$$

$$e = 1.6 \times 10^{-19} C$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$$

$$\epsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$$

$$\frac{1}{4\pi\epsilon_0} = 9\times 10^9~N~m^2~C^{-2}$$

इलेक्ट्रॉन का द्रव्यमान $(m_{\rho}) = 9.1 \times 10^{-31} \text{ kg}.$

न्यूट्रॉन का द्रव्यमान =
$$1.675 \times 10^{-27} \text{ kg}$$
.

प्रोटॉन का द्रव्यमान =
$$1.673 \times 10^{-27}$$
 kg.

आवोगाद्रो संख्या =
$$6.023 \times 10^{23}$$
 प्रति ग्राम मोल

बोल्ट्ज़मान नियतांक =
$$1.38 \times 10^{-23} \, \mathrm{JK^{-1}}$$

General Instructions:

Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into five sections Section A, B, C, D and E.
- (iii) Section A questions number 1 to 16 are multiple choice type questions. Each question carries 1 mark.
- (iv) Section B questions number 17 to 21 are very short answer type questions. Each question carries 2 marks.
- (v) Section C questions number 22 to 28 are short answer type questions. Each question carries 3 marks.
- (vi) **Section D** questions number **29** and **30** are case-based questions. Each question carries **4** marks.
- (vii) Section E questions number 31 to 33 are long answer type questions. Each question carries 5 marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the sections except Section -A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculator is **NOT** allowed.

You may use the following values of physical constants wherever necessary:

$$c = 3 \times 10^8 \text{ m/s}$$

$$h = 6.63 \times 10^{-34} \text{ Js}$$

$$e = 1.6 \times 10^{-19} C$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$$

$$\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$$

$$\frac{1}{4\pi\epsilon_0}$$
 = 9 × 10⁹ N m² C⁻²

Mass of electron (m_e) = 9.1×10^{-31} kg.

Mass of neutron = 1.675×10^{-27} kg.

Mass of proton = 1.673×10^{-27} kg.

Avogadro's number = 6.023×10^{23} per gram mole

Boltzmann's constant = $1.38 \times 10^{-23} \, \mathrm{JK^{-1}}$

 $\overline{\sim 3} \sim P.T.O.$

प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के 1 अंक के प्रश्न हैं।

प्रश्न संख्या 1 से 4 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है । इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए :

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) गलत है।
- (D) अभिकथन (A) गलत है, परन्तु कारण (R) सही है।
- 1. अभिकथन (A) : ग्लाइसीन के अतिरिक्त सभी प्राकृतिक रूप से पाए जाने वाले α -ऐमीनो अम्ल ध्रुवण घूर्णक होते हैं ।
 - कारण (R) : अधिकांश प्राकृतिक रूप से पाए जाने वाले ऐमीनो अम्लों में L-विन्यास होता है।
- 2. अभिकथन (A) : एथेनॉल का क्वथनांक मेथॉक्सीमेथेन से अधिक होता है।
 - कारण (R) : एथेनॉल में अंतः अणुक हाइड्रोजन बंध होता है।
- 3. **अभिकथन (A)** : ऐल्किल हैलाइडों के क्वथनांक निम्न क्रम में घटते हैं : RI > RBr > RCl > RF।
 - कारण (R) : ऐल्किल क्लोराइड, ब्रोमाइड और आयोडाइड के क्वथनांक तुलनीय आण्विक
- द्रव्यमान वाले हाइड्रोकार्बन की तुलना में काफी अधिक होते हैं।
- 4. अभिकथन (A) : $[Cr(H_2O)_6]Cl_2$ तथा $[Fe(H_2O)_6]Cl_2$ होमोलेप्टिक संकुल के उदाहरण हैं ।
 - कारण (R) : धातु के साथ जुड़े सभी लिगैन्ड एक प्रकार के हैं।

SECTION - A

 $(16 \times 1 = 16)$

······

Questions No. 1 to 16 are Multiple Choice type questions carrying 1 mark each.

For questions number 1 to 4, two statements are given – one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below:

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- 1. Assertion (A): All naturally occurring α -amino acids except glycine are optically active.
 - **Reason (R)**: Most naturally occurring amino acids have L-configuration.
- 2. **Assertion (A):** The boiling point of ethanol is higher than that of methoxymethane.
 - **Reason (R)**: There is intramolecular hydrogen bonding in ethanol.
- 3. **Assertion (A)**: The boiling points of alkyl halides decrease in the order: RI > RBr > RCl > RF.
 - Reason (R): The boiling points of alkyl chlorides, bromides and iodides are considerably higher than that of the hydrocarbon of comparable molecular mass.
- 4. Assertion (A) : $[Cr(H_2O)_6]Cl_2$ and $[Fe(H_2O)_6]Cl_2$ are examples of homoleptic complexes.
 - **Reason (R)**: All the ligands attached to the metal are the same.

5.	अचा	र बनाने के लिए नमक के सांद्र विलयन में रखा	गया कर	चा आम सिकुड़ जाता है, क्योंकि
	(A)	यह परासरण के कारण जल प्राप्त करता है।		
	(B)	यह उत्क्रम परासरण के कारण जल खो देता है	है ।	
	(C)	यह उत्क्रम परासरण के कारण जल प्राप्त कर	ता है ।	
	(D)	यह परासरण के कारण जल खो देता है।		
6.	निम्नी	लेखित में से कौन सा कथन ग्लूकोज़ के विषय	में सत्य	नहीं है ?
	(A)	यह एक एल्डोहेक्सोस है ।		
	(B)	${ m HI}$ के साथ गर्म करने पर यह ${ m n}$ -हेक्सेन बना	ता है ।	
	(C)	यह फ्यूरेनोस रूप में उपस्थित होता है।		
	(D)	यह शिफ-परीक्षण नहीं देता है।		
7.	प्रोपेने	माइड को प्रोपेनेमीन में परिवर्तित करने के लिए	सबसे उ	तम अभिकर्मक है ।
	(A)	${ m H_2}$ का आधिक्य		
	(B)	जलीय NaOH में ${ m Br}_2$		
	(C)	लाल फॉस्फोरस की उपस्थिति में आयोडीन		
	(D)	ईथर में $\mathrm{LiA}l\mathrm{H}_4$		
8.	प्रोपित	न मैग्नीशियम ब्रोमाइड को CO_2 के साथ अभि	गक्रिय <u>ि</u> त	करने के पश्चात् अम्ल जलअपघटन करने पर
	बनने	वाला अम्ल है		
	(A)	C_3H_7COOH	(B)	$\mathrm{C_2H_5COOH}$
	(C)	$\mathrm{CH_{3}COOH}$	(D)	$\mathrm{C_3H_7OH}$
9.	निम्ना	लेखित में अम्ल सामर्थ्य का सही क्रम कौन सा	है ?	
	(A)	$\mathrm{C_6H_5OH} > \mathrm{H_2O} > \mathrm{ROH}$	(B)	$\mathrm{C_6H_5OH} > \mathrm{ROH} > \mathrm{H_2O}$
	(C)	$\mathrm{ROH} > \mathrm{C_6H_5OH} > \mathrm{H_2O}$	(D)	$\mathrm{H_2O} > \mathrm{C_6H_5OH} > \mathrm{ROH}$
56/1	/9			*************************************

5.		unripe mango placed in a co	oncentrated	l salt solution to prepare pickle,
	(A)	it gains water due to osmo	\sin	
	(B)	it loses water due to revers		
	(C)	it gains water due to rever	ese osmosis	
	(D)	it loses water due to osmos	sis	
6.	Whi	ch of the following statemer	nts is not tr	ue about glucose ?
	(A)	It is an aldohexose.		
	(B)	On heating with HI it form	ns n-hexane	e.
	(C)	It exists in furanose form.		
	(D)	It does not give Schiff's tes	st.	
7.	The	best reagent for conver	rting propa	anamide into propanamine is
	(A)	excess H_2		
	(B)	Br_2 in aqueous NaOH		
	(C)	iodine in the presence of re	ed phospho	rus
	(D)	${ m LiA} l{ m H}_4$ in ether		
8.		acid formed when propyl bwed by acid hydrolysis is:	magnesiur	n bromide is treated with CO_2
		C_3H_7COOH	(B)	C_2H_5COOH
	(C)	CH ₃ COOH		C_3H_7OH
9.	Whi	ch is the correct order of ac	id strength	from the following?
		$C_6H_5OH > H_2O > ROH$		$C_6H_5OH > ROH > H_2O$
		$ROH > C_6H_5OH > H_2O$		$H_2O > C_6H_5OH > ROH$
56/ 1	1/2		~ 7 ~	P.T.O.

- 10. नाभिकरागी द्विआणविक प्रतिस्थापन अभिक्रिया से गुजरने वाले ऐल्किल हैलाइड में सम्मिलित है
 - (A) विन्यास का धारण

(B) रेसिमिक मिश्रण का बनना

(C) विन्यास का प्रतिलोमन

- (D) कार्बोधनायन का निर्माण
- 11. निम्नलिखित यौगिकों को उनके क्वथनांक के बढ़ते क्रम में व्यवस्थित करें :

सही क्रम है

(A) (ii) < (i) < (iii)

(B) (i) < (ii) < (iii)

(C) (iii) < (i) < (ii)

- (D) (iii) < (ii) < (i)
- $12. \quad [\mathrm{Pt}(\mathrm{NH_3})_2\mathrm{C}l_2]^{2^+}$ का सही IUPAC नाम है
 - (A) डाइऐम्मीनडाइक्लोरिडोप्लैटिनम (II)
 - (B) डाइऐम्मीनडाइक्लोरिडोप्लैटिनम (IV)
 - (C) डाइऐम्मीनडाइक्लोरिडोप्लैटिनम (O)
 - (D) डाइऐम्मीनडाइक्लोरिडोप्लैटिनेट (IV)
- 13. अम्लीय $\mathrm{KMnO_4}$ सल्फाइट को ऑक्सीकृत कर देता है
 - (A) $S_2O_3^{2-} \ddot{H}$

(B) $S_2O_8^{2-}$ \ddot{H}

(C) $SO_2(g)$ में

(D) SO²⁻前

- 10. Alkyl halides undergoing nucleophilic bimolecular substitution reaction involve
 - (A) retention of configuration
 - (B) formation of racemic mixture
 - (C) inversion of configuration
 - (D) formation of carbocation
- 11. Arrange the following compounds in increasing order of their boiling points:

(i)
$$CH_3$$
 $CH - CH_2Br$ (ii) $CH_3CH_2CH_2CH_2Br$ (iii) $H_3C - C - CH_3$ Rr

The correct order is

 $(A) \quad (ii) < (i) < (iii)$

(B) (i) < (ii) < (iii)

(C) (iii) < (i) < (ii)

- (D) (iii) < (ii) < (i)
- 12. The correct IUPAC name of $[Pt(NH_3)_2Cl_2]^{2+}$ is
 - (A) Diamminedichloridoplatinum (II)
 - (B) Diamminedichloridoplatinum (IV)
 - (C) Diamminedichloridoplatinum (O)
 - (D) Diamminedichloridoplatinate (IV)
- 13. Acidified $KMnO_4$ oxidises sulphite to
 - (A) $S_2O_3^{2-}$

(B) $S_2O_8^{2-}$

(C) $SO_2(g)$

(D) SO_4^{2}

14.	चुबक	विय आघूर्ण इसके प्रचक्रणी कोणीय सर्वेग और	कक्षीय	कोणीय सर्वेग से जुड़ा होता है । Cr^{3+} आयन
	(परम	ाणु क्रमांक : Cr = 24) का प्रचक्रण मात्र चुंब $^{\circ}$	क्रीय अ	ाघूर्ण मान है ।
	(A)	2.87 B.M.	(B)	3.87 B.M.
	(C)	3.47 B.M.	(D)	3.57 B.M.
15.	-0.7	$^{+}\!/\mathrm{Sn}^{2+}$ युग्म के लिए मानक इलेक्ट्रोड विभ् $^{\prime}4~\mathrm{V}$ है। दो युग्म अपनी मानक अवस्थाओं में। होगा		G
	(A)	+1.19 V	(B)	+0.89 V
	(C)	+0.18 V	(D)	+1.83 V
16.	संगुण	न में विलेय का अपसामान्य मोलर द्रव्यमान		
	(A)	बढ़ेगा	(B)	घटेगा
	(C)	अपरिवर्तित रहेगा	(D)	पहले बढ़ेगा और फिर घटेगा
		खण्ड -	-ख	
17.	निम्नी	लेखित प्रत्येक अनुक्रम अभिक्रिया में Λ और Γ	3 की प	हचान कीजिए : $(1 + 1 = 2)$
	(a)	$\mathrm{CH_{3}CH_{2}C}l \xrightarrow{\mathrm{NaCN}} \mathrm{A} \xrightarrow{\mathrm{H_{2}/Ni}}$	В	
	(b)	$\mathbf{C_6H_5NH_2} \xrightarrow{\mathbf{NaNO_2/HC}l} \mathbf{A} \xrightarrow{\mathbf{C_6H}} \mathbf{A} \xrightarrow{\mathbf{C_6H}} \mathbf{A}$	₅ NH ₂ H ⁺	→ B
18.	जब]	${ m FeCr}_2{ m O}_4$ को वायु की उपस्थिति में ${ m Na}_2{ m C}$	O_3 के	साथ संगलित किया जाता है तो यह यौगिक
	(A) 7	का पीला विलयन देता है। यौगिक (A) अम्ली	कृत हों	ने पर यौगिक (B) देता है । यौगिक (B) $\mathrm{KC}l$
	के स	1थ अभिक्रिया करके नारंगी रंग का यौगिक ((C) बन	गता है। यौगिक (C) का अम्लीय विलयन
	आयो	डाइड को (D) में ऑक्सीकृत करता है। (A),	(B), (C	C) और (D) को पहचानिए।
		-		

 $\mathbf{2}$

19. क्या आप अपेक्षा करते हैं कि प्रोपेनल की तुलना में बेंजैल्डिहाइड नाभिकरागी योगज अभिक्रियाओं में

अधिक अभिक्रियाशील या कम अभिक्रियाशील होगा ? अपना उत्तर स्पष्ट कीजिए।

14.	1. The magnetic moment is associated with i	ts spin angular momentum and
	orbital angular momentum. Spin only mag	gnetic moment value of ${ m Cr}^{3+}$ ion
	(Atomic no. : $Cr = 24$) is	
	(A) 2.87 B.M. (B)	3.87 B.M.

15. Standard electrode potential for $\rm Sn^{4+}/Sn^{2+}$ couple is +0.15 V and that for the $\rm Cr^{3+}/Cr$ couple is -0.74 V. The two couples in their standard states are connected to make a cell. The cell potential will be

(A)
$$+1.19 \text{ V}$$

(C) 3.47 B.M.

(B)
$$+0.89 \text{ V}$$

(D) 3.57 B.M.

$$(C) +0.18 V$$

16. In case of association, abnormal molar mass of solute will

(A) increase

(B) decrease

(C) remain same

(D) first increase and then decrease

2

 $\mathbf{2}$

SECTION - B

17. Identify A and B in each of the following reaction sequence: (1 + 1 = 2)

(a)
$$CH_3CH_2Cl \xrightarrow{NaCN} A \xrightarrow{H_2/Ni} B$$

$$\text{(b)} \quad \mathrm{C_6H_5NH_2} \xrightarrow{\mathrm{NaNO_2/HC}l} \mathrm{A} \xrightarrow{\phantom{\mathrm{C_6H_5NH_2}}\phantom{\phantom{\mathrm{C_6H_5NH_2}}\phantom{\mathrm{MANO_2/HC}l}} \mathrm{B}$$

18. When FeCr₂O₄ is fused with Na₂CO₃ in the presence of air it gives a yellow solution of compound (A). Compound (A) on acidification gives compound (B). Compound (B) on reaction with KCl forms an orange coloured (C). An acidified solution of compound (C) oxidises iodide to (D). Identify (A), (B), (C) and (D).

19. Would you expect benzaldehyde to be more reactive or less reactive in nucleophilic addition reactions than propanal? Justify your answer.

56/1/2 ~ 11 ~ P.T.O.

20. (A) कारण बताइए:

(1+1=2)

- (a) प्रेशर-कुकर में खाना पकाना, खुले बर्तन (कड़ाही) की तुलना में तेज़ होता है।
- (b) द्रव X और द्रव Y को मिलाने पर, परिणामी विलयन का आयतन कम हो जाता है । परिणामी विलयन राउल्ट के नियम से किस प्रकार का विचलन दर्शाता है ? द्रव X और Y को मिलाने के बाद आप ताप में क्या परिवर्तन प्रेक्षित करेंगे ?

अथवा

(B) स्थिरक्वाथी को परिभाषित करें । राउल्ट के नियम में ऋणात्मक विचलन से किस प्रकार का स्थिरक्वाथी बनता है ? एक उदाहरण दीजिए ।

21. निम्नलिखित के कारण दीजिए :

 $\mathbf{2}$

3

3

 $\mathbf{2}$

- (a) ऐमीनो अम्लों के गलनांक सामान्यतः संगत कार्बोक्सिलिक अम्लों की तुलना में अधिक होते हैं।
- (b) ऐमीनो अम्ल उभयधर्मी व्यवहार दर्शाते हैं।

खण्ड – ग

- 22. जल में प्रति लीटर 15 ग्राम यूरिया (मोलर द्रव्यमान = 60 g mol⁻¹) वाले विलयन का परासरण दाब जल में ग्लूकोज़ (मोलर द्रव्यमान = 180 g mol⁻¹) के विलयन के समान (समपरासरी) है। इसके एक लीटर विलयन में उपस्थित ग्लूकोज़ का द्रव्यमान परिकलित कीजिए।
- 23. अभिक्रिया के लिए $\Delta_{
 m r}$ G° और $\log\,{
 m K_C}$ परिकलित कीजिए :

$$\mathrm{Fe^{2+}}(\mathrm{aq}) + \mathrm{Ag^{+}}(\mathrm{aq}) \longrightarrow \mathrm{Fe^{3+}}(\mathrm{aq}) + \mathrm{Ag(s)}$$

दिया गया है : $E_{Ag^+/Ag}^{\circ} = 0.80 \mathrm{\ V}, \ E_{Fe^{3^+}\!/Fe^{2^+}}^{\circ} = 0.77 \mathrm{\ V}$

 $[R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}, F = 96500 \text{ C mol}^{-1}]$

56/1/2

20. (A) Give reasons:

(1+1=2)

- (a) Cooking is faster in pressure cooker than in an open pan.
- (b) On mixing liquid X and liquid Y, volume of the resulting solution decreases. What type of deviation from Raoult's law is shown by the resulting solution? What change in temperature would you observe after mixing liquids X and Y?

OR

- (B) Define Azeotrope. What type of Azeotrope is formed by negative deviation from Raoult's law? Give an example.
- 21. Give reasons for the following:

2

2

- (a) The melting points of α -amino acids are generally higher than that of the corresponding carboxylic acids.
- (b) Amino acids show amphoteric behaviour.

SECTION - C

- 22. A solution containing 15 g urea (molar mass = 60 g mol⁻¹) per litre of solution in water has the same osmotic pressure (isotonic) as a solution of glucose (molar mass = 180 g mol⁻¹) in water. Calculate the mass of glucose present in one litre of its solution.
- 3

3

23. Calculate $\Delta_{\!_{\rm T}}\,G^{\circ}$ and log K_{C} of the reaction :

$$Fe^{2+}(aq) + Ag^{+}(aq) \longrightarrow Fe^{3+}(aq) + Ag(s)$$

Given
$$E_{Ag^{+}/Ag}^{\circ} = 0.80 \text{ V}, E_{Fe^{3+}/Fe^{2+}}^{\circ} = 0.77 \text{ V}$$

$$[R = 8.314~J~K^{-1}~mol^{-1},~F = 96500~C~mol^{-1}]$$

P.T.O.

- - (b) निम्नलिखित के लिए कारण दीजिए:
 - (i) ऐलीफैटिक ऐमीनों की तुलना में ऐरोमैटिक ऐमीनों के डाइज़ोनियम लवण अधिक स्थायी होते हैं।
 - m (ii) जल में मेथिलऐमीन, $m FeC\it l_3$ के साथ अभिक्रिया करके जलयोजित फेरिक ऑक्साइड अवक्षेपित कर देती है ।
- 25. (A) निम्नलिखित प्रत्येक अभिक्रिया के लिए प्रमुख मोनोहैलो उत्पाद की संरचना बनाइये : (1+1+1=3)

(a)
$$Cl$$
 $CH_2 - CH_3$ Br_2 , ऊष्मा $?$

(b)
$$CH_3^+ HBr \longrightarrow ?$$

$$(c)$$
 HO – H_2C \longrightarrow OH \longrightarrow PCl , ऊष्मा \longrightarrow ?

अथवा

(B) आप कैसे रूपांतरित करेंगे ?

 $(3\times 1=3)$

- (a) क्लोरोबेन्ज़ीन को बाईफेनिल में
- (b) प्रोपीन को 1-आयडोप्रोपेन में
- (c) 2-ब्रोमोब्यूटेन को ब्यूट-2-ईन में
- 26. 3d संक्रमण श्रेणी के तत्व इस प्रकार दिए गए हैं :

(1+1+1=3)

Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn निम्नलिखित का उत्तर दीजिए:

- (a) कॉपर का ${
 m E_{M^{2+}\!/\!M}^{\circ}}$ मान असाधारण रूप से धनात्मक है, क्यों ?
- (b) कौन सा तत्व +2 ऑक्सीकरण अवस्था में एक प्रबल अपचायक है और क्यों ?
- (c) Zn^{2+} लवण रंगहीन होते हैं, क्यों ?

24. (a) Arrange the following in decreasing order of pK_b : (1 + 2 = 3)

Aniline, p-nitroaniline, p-methylaniline

- (b) Account for the following:
 - (i) Diazonium salts of aromatic amines are more stable than those of aliphatic amines.
 - (ii) Methylamine in water reacts with ${\rm FeC}l_3$ to precipitate hydrated ferric oxide.
- 25. (A) Draw the structure of the major monohalo product for each of the following reaction: (1+1+1=3)

(a)
$$Cl$$
 $CH_2 - CH_3$ Br_2 , $Heat$?

(b)
$$CH_3$$
 + HBr \longrightarrow ?

(c)
$$HO - H_2C$$
 OR HCl , $Heat$?

(B) How do you convert:

 $(3 \times 1 = 3)$

- (a) Chlorobenzene to biphenyl
- (b) Propene to 1-Iodopropane
- (c) 2-bromobutane to but-2-ene.
- 26. The elements of 3d transition series are given as: (1+1+1=3)

Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn

Answer the following:

- (a) Copper has exceptionally positive $E_{M^{2+}\!/\!M}^{\circ}$ value, why ?
- (b) Which element is a strong reducing agent in +2 oxidation state and why?
- (c) Zn^{2+} salts are colourless. Why?

27.	कोई अभिक्रिया $300~\mathrm{K}$ पर 20 मिनट में 50% पूर्ण हो जाती है और वही अभिक्रिया $350~\mathrm{K}$ पर
	5 मिनट में 50% पूर्ण हो जाती है। यदि यह अभिक्रिया प्रथम कोटि की है तो सक्रियण ऊर्जा की गणना
	कीजिए।

 $[R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}; \log 4 = 0.602]$

- 28. (a) अभिक्रिया लिखिए जब D-ग्लूकोज़ निम्नलिखित के साथ अभिक्रिया करता है:
 - (i) NH₂OH
 - (ii) एसीटिक एनहाइड्राइड
 - (b) विटामिन C हमारे शरीर में क्यों संचित नहीं हो सकता ?

खण्ड – घ

निम्नलिखित प्रश्न प्रकरण आधारित प्रश्न है। परिच्छेद को ध्यानपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए।

29. बेन्जीन वलय से जुड़े OH समूह के प्रबल सिक्रयण प्रभाव के कारण फ़ीनॉल आसानी से इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाएँ देते हैं । चूँकि OH समूह o— और p— स्थितियों पर इलेक्ट्रॉन घनत्व को अधिक बढ़ाता है, इसिलए OH समूह ऑथों और पैरा निर्देशक होता है । राइमर-टीमन इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रिया के उदाहरण में से एक है । जिसके द्वारा फ़ीनॉल की एरोमैटिक वलय में हाइड्रॉक्सिल समूह की ऑथों स्थिति पर एल्डिहाइड समूह प्रवेश कर जाता है । यह एक सामान्य विधि है जो फ़ीनॉलों के ऑथों फार्मिलन के लिए प्रयुक्त की जाती है ।

निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (a) क्या होता है जब फ़ीनॉल निम्न से अभिक्रिया करता है ?
 - (i) Br_2/CS_2
 - (ii) सांद्र HNO₃
- (b) फ़ीनॉल का प्रोटॉनन आसानी से क्यों नहीं होता है ?
- (c) कौन सा एक प्रबल अम्ल है : फ़ीनॉल अथवा क्रीसॉल ? कारण दीजिए।

अथवा

(c) राइमर-टीमन अभिक्रिया में बनने वाले उत्पाद का IUPAC नाम लिखें।

1

1

1

2

3

3

56/1/2

27.	A certain reaction is 50% complete in 20 minutes at 300 K and the same
	reaction is 50% complete in 5 minutes at 350 K. Calculate the activation
	energy if it is a first order reaction.

3

 $[R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}; \log 4 = 0.602]$

28. (a) Write the reaction when D-glucose reacts with the following:

3

- (i) NH₂OH
- (ii) Acetic anhydride
- (b) Why vitamin C cannot be stored in our body?

SECTION - D

The following questions are case based questions. Read the passage carefully and answer the questions that follow.

29. Phenols undergo electrophilic substitution reactions readily due to the strong activating effect of OH group attached to the benzene ring. Since, the OH group increases the electron density more to o— and p— positions therefore OH group is ortho, para-directing. Reimer-Tiemann reaction is one of the examples of aldehyde group being introduced on the aromatic ring of phenol, ortho to the hydroxyl group. This is a general method used for the ortho-formylation of phenols.

Answer the following questions:

(a) What happens when phenol reacts with

2

- (i) Br_2/CS_2
- (ii) Conc. HNO₃
- (b) Why phenol does not undergo protonation readily?

1

(c) Which is a stronger acid – phenol or cresol? Give reason.

1

OR.

(c) Write the IUPAC name of the product formed in the Reimer-Tiemann reaction.

1

30. रासायनिक अभिक्रिया का वेग या तो प्रित इकाई समय में अभिकारक की सांद्रता में कमी या उत्पाद की सांद्रता में वृद्धि के रूप में व्यक्त किया जाता है। अभिक्रिया का वेग अभिकारकों की प्रकृति, अभिकारकों की सांद्रता, तापमान, उत्प्रेरक की उपस्थिति, अभिकारकों के पृष्ठीय क्षेत्रफल और प्रकाश की उपस्थिति पर निर्भर करता है। अभिक्रिया का वेग अभिकारक की सांद्रता से सीधे संबंधित होता है। वेग नियम बताता है कि अभिक्रिया का वेग सांद्रता पदों पर निर्भर करता है जिस पर अभिक्रिया का वेग वास्तव में निर्भर करता है, जैसा कि प्रयोगात्मक रूप से देखा गया है। वेग नियम अभिव्यक्ति में अभिकारकों की सांद्रता की घातों के योग को अभिक्रिया की कोटि कहा जाता है जबिक एक प्राथमिक अभिक्रिया में भाग लेने वाली स्पीशीज़ की संख्या जो रासायनिक अभिक्रिया सम्पन्न करने के लिए एक साथ संघट्ट करती है, अभिक्रिया की आण्विकता कहलाती है।

निम्न प्रश्नों के उत्तर दीजिए:

(a) (i) वेग निर्धारक पद क्या है ?

(1+1=2)

(ii) जटिल अभिक्रिया को परिभाषित कीजिए।

(b) वेग स्थिरांक पर ताप का क्या प्रभाव पडता है ?

1

1

1

अथवा

(b) आण्विकता केवल प्राथमिक अभिक्रियाओं के लिए ही क्यों लागू होती है जबिक कोटि प्राथमिक और जटिल अभिक्रिया दोनों के लिए लागू होती हैं ?

(c) अणु X का Y में रूपांतरण द्वितीय कोटि की बलगतिकी के अनुरूप होता है। यदि X की सांद्रता तीन गुनी कर दी जाए तो Y के निर्माण होने के वेग पर क्या प्रभाव पड़ेगा ?

खण्ड – ङ

31. (A) (a) निम्नलिखित रूपांतरण करें :

(2+3=5)

- (i) एथेनेल से ब्यूट-2-ईनैल
- (ii) प्रोपेनोइक अम्ल से एथेन
- (b) आण्विक सूत्र C_5H_{10} वाला एक एल्कीन A ओज़ोनी अपघटन पर दो यौगिकों B और C का मिश्रण देता है । यौगिक B धनात्मक फेलिंग परीक्षण देता है और आयोडीन और NaOH विलयन के साथ भी अभिक्रिया करता है । यौगिक C फेलिंग परीक्षण नहीं देता है लेकिन आयोडोफार्म बनाता है । यौगिक A, B और C की पहचान कीजिए ।

अथवा

30. The rate of a chemical reaction is expressed either in terms of decrease in the concentration of reactants or increase in the concentration of a product per unit time. Rate of the reaction depends upon the nature of reactants, concentration of reactants, temperature, presence of catalyst, surface area of the reactants and presence of light. Rate of reaction is directly related to the concentration of reactant. Rate law states that the rate of reaction depends upon the concentration terms on which the rate of reaction actually depends, as observed experimentally. The sum of powers of the concentration of the reactants in the Rate law expression is called order of reaction while the number of reacting species taking part in an elementary reaction which must collide simultaneously in order to bring about a chemical reaction is called molecularity of the reaction.

Answer the following questions:

(a) (i) What is a rate determining step?

(1+1=2)

(ii) Define complex reaction.

(b) What is the effect of temperature on the rate constant of a reaction?

OR

(b) Why is molecularity applicable only for elementary reactions whereas order is applicable for elementary as well as complex reactions?

1

1

1

(c) The conversion of molecule X to Y follows second order kinetics. If concentration of X is increased 3 times, how will it affect the rate of formation of Y?

SECTION - E

31. (A) (a) Carry out the following conversions:

(2+3=5)

- (i) Ethanal to But-2-enal
- (ii) Propanoic acid to ethane
- (b) An alkene A with molecular formula C_5H_{10} on ozonolysis gives a mixture of two compounds B and C. Compound B gives positive Fehling test and also reacts with iodine and NaOH solution. Compound C does not give Fehling solution test but forms iodoform. Identify the compounds A, B and C.

OR

- 31. (B) एक कार्बनिक यौगिक (A) (आण्विक सूत्र $C_8H_{16}O_2$) को तनु सल्फ्यूरिक अम्ल के साथ जल अपघटन करके कार्बोक्सिलिक अम्ल (B) और एल्कोहॉल (C) प्राप्त हुआ । (C) का क्रोमिक अम्ल के साथ ऑक्सीकरण करने पर (B) बनता है । निर्जलीकरण पर (C) ब्यूट-1-ईन देता है । (A), (B) और (C) को पहचानिए तथा सम्मिलिति अभिक्रियाओं के लिए रासायनिक समीकरण लिखिए ।
- $32.~~{
 m (A)}~~{
 m tightharpoonup (Fe(en)}_2{
 m C}l_2{
 m]}~{
 m C}l$ के लिए पहचानिए :

5

5

- (a) आयरन की ऑक्सीकरण संख्या
- (b) संकरण और संकुल का आकार
- (c) संकुल का चुंबकीय व्यवहार
- (d) क्या संकुल का कोई प्रकाशिक समावयव है? यदि हाँ, तो उनकी संरचना बनाइए।
- (e) संकुल का IUPAC नाम दीजिए। (Fe की परमाणु संख्या = 26)

अथवा

32. (B) (a) IUPAC नियमों के आधार पर निम्नलिखित के नाम लिखिए:

(3 + 2 = 5)

- (i) $[Co(NH_3)_4 Cl(NO_2)]Cl$
- (ii) $K_3[Fe(CN)_6]$
- (iii) $[Cr(C_2O_4)_3]^{3-}$
- (b) क्रिस्टल क्षेत्र विपाटन ऊर्जा क्या है ? निम्न प्रचक्रण चतुष्फलकीय संकुल क्यों नहीं बनते हैं ?
- 33. (A) (a) निम्नलिखित के लिए सेल अभिक्रिया लिखिए तथा $298~{
 m K}$ पर सेल का ${
 m e.m.f.}$ (3 + 2 = 5)

Sn(s) | Sn²⁺ (0.004 M) | | H⁺ (0.02 M) | H₂(g) (1 Bar) | Pt (s)

(दिया गया है : $E_{\mathrm{Sn}^{2+}\!/\mathrm{Sn}}^{\circ}$ = $-0.14~\mathrm{V},~E_{\mathrm{H}+|\mathrm{H}_{2}(\mathrm{g}),~\mathrm{Pt}}^{\circ}$ = $0.00\mathrm{V})$

56/1/2

31. (B) An organic compound (A) (molecular formula $C_8H_{16}O_2$) was hydrolysed with dilute sulphuric acid to get a carboxylic acid (B) and an alcohol (C). Oxidation of (C) with chromic acid produced (B). (C) on dehydration gives But-l-ene. Identify (A), (B) and (C) and write chemical equations for the reactions involved.

5

32. (A) For the complex $[Fe(en)_2Cl_2]$ Cl, identify:

5

- (a) the oxidation number of iron.
- (b) the hybridization and the shape of the complex.
- (c) the magnetic behaviour of the complex
- (d) whether there is an optical isomer of the complex? If so draw its structure.
- (e) IUPAC name of the complex.

(At. no. of Fe = 26)

OR

- 32. (B) (a) Using IUPAC norms write the names of the following: (3 + 2 = 5)
 - (i) $[Co(NH_3)_4 Cl(NO_2)]Cl$
 - (ii) $K_3[Fe(CN)_6]$
 - (iii) $[Cr(C_2O_4)_3]^{3-}$
 - (b) What is crystal field splitting energy? Why low spin tetrahedral complexes are not formed?
- 33. (A) (a) Write the cell reaction and calculate the e.m.f. of the following cell at 298 K: (3 + 2 = 5)

Sn(s) | Sn²⁺ (0.004 M) | | H⁺ (0.02 M) | H₂(g) (1 Bar) | Pt (s)

(Given : $E_{Sn^{2+}/Sn}^{\circ} = -0.14 \text{ V}, E_{H+|H_2(g), Pt}^{\circ} = 0.00 \text{V}$)

- (b) निम्नलिखित के कारण बताइए:
 - (i) ${
 m E}^\circ$ मानों के आधार पर, ${
 m O}_2$ गैस एनोड पर मुक्त होनी चाहिए, लेकिन जलीय ${
 m NaC}l$ के विद्युत अपघटन में ${
 m C}l_2$ गैस मुक्त होती है ।
 - (ii) तनुकरण पर $\mathrm{CH_3COOH}$ की चालकता कम हो जाती है।

अथवा

- 33. (B) (a) लेड स्टोरेज बैटरी के उपयोग के दौरान होने वाली ऐनोड और कैथोड अभिक्रियाएँ और समग्र सेल अभिक्रिया लिखें। (2 + 3 = 5)
 - (b) $0.01~{\rm M}~{\rm K_2Cr_2O_7(aq)},~0.01~{\rm M}~{\rm Cr^{3+}(aq)}$ और $1.0\times10^{-4}~{\rm M}~{\rm H^+(aq)}$ युक्त अर्ध सेल के लिए विभव की गणना करें ।

अर्ध-सेल अभिक्रिया है:

$$\mathrm{Cr_2O_7^{2-}(aq)} + 14\mathrm{H^+(aq)} + 6\mathrm{e^-} {\longrightarrow} 2\mathrm{Cr^{3+}(aq)} + 7\mathrm{H_2O}(\mathit{l})$$

और मानक इलेक्ट्रोड विभव $E^\circ=1.33~V$ दिया गया है।

[दिया गया है : $\log 10 = 1$]

- (b) Account for the following;
 - (i) On the basis of E° values, ${\rm O}_2$ gas should be liberated at anode but it is ${\rm C}l_2$ gas which is liberated in the electrolysis of aqueous NaCl.
 - (ii) Conductivity of CH₃COOH decreases on dilution.

OR

- 33. (B) (a) Write the anode and cathode reactions and the overall cell reaction occurring in a lead storage battery during its use. (2 + 3 = 5)
 - (b) Calculate the potential for half-cell containing 0.01 M $K_2Cr_2O_7(aq),\,0.01\;M\;Cr^{3+}\;(aq)\;and\;1.0\times10^{-4}\;M\;H^+(aq).$

The half cell reaction is

$$\mathrm{Cr_2O_7^{2-}(aq)} + 14\mathrm{H^+(aq)} + 6\mathrm{e^-} {\longrightarrow} 2\mathrm{Cr^{3+}(aq)} + 7\mathrm{H_2O}(\mathit{l})$$

and the standard electrode potential is given as $E^{\circ} = 1.33 \text{ V}$.

[Given: log 10 = 1]

56/1/2

·

56/1/2

730-2

~ 24 ~

^

Marking Scheme Strictly Confidential

(For Internal and Restricted use only) Senior School Certificate Examination, 2024-25 SUBJECT NAME CHEMISTRY (Theory) -043

(Q.P.CODE 56/1/2) MM: 70

General Instructions: -

You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.

"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."

Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.

The Marking scheme carries only suggested value points for the answers

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.

Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. **This is most common mistake which evaluators are committing.**

If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.

If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".

No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

A full scale of marks _____(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.

Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on an answer.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying/not same.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)

Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.

Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.

Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.

The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

CHEMISTRY (Theory)- 043

QP CODE 56/1/2 MM: 70

Q. No	Value points	Mark
-	SECTION A	
1	(B)	1
2	(C)	1
3	(B)	1
4	(A)	1
5	(D)	1
6	(C)	1
7	(D)	1
8	(A)	1
9	(A)	1
10	(C)	1
11	(C)	1
12	(B)	1
13	(D)	1
14	(B)	1
15	(B)	1
16	(A)	1
	SECTION B	
17	(a) $A = CH_3CH_2CN$; $B = CH_3CH_2$ CH_2NH_2	½ x 4
	(b) $A = C_6 H_5 N_2^+ C_1^-$;	/2 // 1
	N=N-N-12	
	B =	
18	A = Na ₂ CrO ₄ / Sodium chromate	$\frac{1}{2} \times 4$
	B =Na ₂ Cr ₂ O ₇ / Sodium dichromate	=2
	C = K ₂ Cr ₂ O ₇ / Potassium dichromate	
10	$D = I_2 / \text{lodine}$	4
19	Less reactive,	1
	The carbon atom of the carbonyl group of benzaldehyde is less electrophilic than carbon	4
	atom of the carbonyl group present in propanal / The polarity of the carbonyl group is	1
20	reduced in benzaldehyde due to resonance.	1
20	(A) (a) Due to high pressure inside the pressure cooker, higher is the boiling point and	1
	faster is the cooking.	
	(b)	1/
	Negative deviation	1/2
	Temperature increases.	1/2
	OR (a)	
20	(B)	
	Same composition in liquid and in vapour phase and boil at a constant temperature.	1
	Maximum Boiling Azeotrope	1/2
	68% HNO ₃ + 32% H ₂ O (Or any other correct example) (Percentage can be ignored)	1/2
21	(a) Presence of dipolar ion / Zwitter ion which create stronger electrostatic force of attraction /	1
	structure of Zwitter ion with explanation.	
	(b) Due to the presence of both carboxylic group and amino group / due to the presence of	1
	zwitter ion structure it can react with acids and bases.	

	SECTION C	
22	$\Pi = CRT = \frac{w_B RT}{M_B V}$	
	π_{BV} $\pi_{\text{glucose}} = \pi_{\text{urea}}$	1
	$C_G = C_U$	1/2
	$\frac{W_G}{W_G} = \frac{W_U}{W_G}$	1/2
	$\frac{W_G}{M_G} = \frac{W_U}{M_U}$ $\frac{WG}{180} = \frac{15}{60}$	
	$\frac{180}{180} = \frac{1}{60}$	
	15×180	
	$WG = {60}$	
	=45 g	1
23	E°c _{ell} = E° _{cathode} -E° _{anode}	
	=E° _{Ag+/Ag} =E° _{Fe3+/Fe2+}	
	= 0.80 - 0.77	
	= 0.03 V	1/2
	$\triangle G^0 = -nF E^0 C_{ell}$	1/2
	= -1 x 96500 X 0.03	
	= -2895 J/mol = -2.895 KJ/ mol	1
	$\triangle G^0 = -2.303 \text{ RG} / \text{ Mol}$	1/2
	$\log Kc = -\Delta G^{0} / 2.303RT$	
	= 2895 / 2.303 x 8.314 X 298	
	log Kc =2895 / 5700	1.
	= 0.508 (Or any other suitable method)	1/2
24	(a) p-nitroaniline > Aniline > p-methylanilineb) (i) Due to resonance stabilization.	1
	(ii) Methylamine in water acts as a base and release OH ions which reacts with FeCl ₃ to	1
	form hydrated ferric oxide. / chemical equation	-
25	(A) (a)	
	Br	1
	CH ₃	1
	CI C	
	(b)	
	Br	
	СНЗ	
		1
	(c)	
	CI	
	но	1
	OR	
25	(B)	
	(a)	
	CI ZNa	1
	2 Ether	1
	-2760	
		1

	(b)	
	$CH_3CH = CH_2 + HBr \xrightarrow{peroxide} CH_3CH_2CH_2Br$	1
	1	
	CH ₃ CH ₂ CH ₂ I ← Acetone	
	(c)	
	CB - CB - CH ₂ - CH ₃ Ethanolic KOH	1
	$CH_3 - CH - CH_2 - CH_3 \xrightarrow{\text{Ethanolic KOH}} CH_3 - CH = CH - CH_3 \cdot HBr$	1
	(or any other quitable method of conversion)	
26.	(or any other suitable method of conversion)	1
	(a) its high $\Delta_{\rm a} H^{\rm o}$ and low $\Delta_{\rm hyd} H^{\rm o}$	_
	(b) • Cr	
	• Cr ³⁺ (d ⁴ to d ³) / stable half-filled t _{2g} level	1/2,1/2
	(c) Fully-filled d-orbitals hence no d-d transition / due to the absence of unpaired electron.	1
27	$t_{1/2} = \frac{0.693}{k}$	<u> </u>
	κ	
	$k_1 = \frac{0.693}{20} = 0.03465 / 3.465 \times 10^{-2} \text{ min}^{-1}$	1/2
	$k_2 = \frac{0.693}{5} = 0.1386 / 1.386 \times 10^{-1} \text{min}^{-1}$	1/2
		/2
	$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$	
	$k_1 = 2.303R \begin{bmatrix} T_1T_2 \end{bmatrix}$	1/2
	, 0.1386 Ea [350-300]	
	$\log \frac{0.1386}{0.03465} = \frac{Ea}{2.303 \times 8.314} \frac{[350 - 300]}{[350 \times 300]}$	1/2
	$\log 4 = \frac{Ea}{19.15} \frac{[50]}{[350 \times 300]}$	
	Ea = 24209 J mol ⁻¹ or 24.209 kJ mol ⁻¹ (Deduct ½ mark for no or incorrect unit)	1
28	(a) (i)	
	CHO CH=N-OH	1
	$(CHOH)_4 \xrightarrow{NH_2OH} (CHOH)_4$	_
	CH ₂ OH CH ₂ OH	
	(ii)	
	CHO CHO O Acetic anhydride (CHO CHO)	
	$(CHOH)_4 \longrightarrow (CHOH)_4$	
	CH ₂ OH CH ₂ —O—C—CH ₃	4
	Ö	1
	(b) Vitamin C is water soluble and is excreted through urine.	1

	SECTION D	
29	(a)	
	(i)	
	OH OH OH	
	$rac{\operatorname{Br_2 in CS_2}}{273 \mathrm{W}} + rac{\mathrm{DI}}{2}$	
	2/3/1	1
	Br / 2-Bromophenol and 4-Bromophenol is	
	formed.	
	(ii) OH OH	
	\int_{1}^{1} $O_{2}N$ \int_{1}^{1} NO_{2}	
	Conc. HNO ₃	1
		*
	NO ₂ / 2,4,6-Trinitrophenol / Picric acid is	
	formed.	
	(b)Due to resonance, the lone pair of electrons on oxygen is not easily available for	
	protonation.	1
	(c)	
	Phenol	
	Due to electron releasing effect (+I effect) of methyl group/ phenoxide ion formed is less	1/2
	stable in cresol.	1/2
	OR	
	(c) 2-Hydroxybenzaldehyde / 2- Hydroxybenzenecarbaldehyde.	1
30	(a) (i) Slowest step.	1
	(ii) Series of elementary reactions / Reactions involving two or more steps.	1
	(b) Increases with increase in temperature	1
	OR	
	(b) Molecularity is defined only for elementary reactions whereas order is experimentally	_
	determined hence applicable for both / Because molecularity of each elementary reaction in complex reaction may be different and hence meaningless for overall complex reaction whereas	1
	order of a complex reaction is experimentally determined by the slowest step in its mechanism	
	and is therefore applicable for both.	
	(c) 9 times	1
	SECTION E	_
31	(A) (a) (i)	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
	$2CH_3 - CH - CH_3 - CH_3 - CH_2 - CHO \xrightarrow{\Delta} CH_3 - CH - CHO$	
	(ii)	
	CH₃CH₂COOH + NaOH + CaO + heat → CH₃-CH₃	1
		1
	(b) A = (CH ₃) ₂ CH=CHCH ₃ / 2-Methylbut-2-ene	1
	B = CH3CHO / Ethanal	1
	C = CH ₃ COCH ₃ / Acetone/ Propanone	1
	OR	
31	A= C ₃ H ₇ COOC ₄ H ₉ / Butyl butanoate	1
	B= C ₃ H ₇ COOH / Butanoic acid	1/2
	C= C ₄ H ₉ OH / Butan-1-ol	1/2
	$C_3H_7COOC_4H_9+ dil.H_2SO_4 \rightarrow C_3H_7COOH + C_4H_9OH$	1
	$C_4H_9OH + Conc.$ Sulphuric acid + Heat \rightarrow CH ₃ CH ₂ CH=CH ₂	1
	$C_4H_9OH \xrightarrow{CrO_3 / CH_3COOH} C_3H_7COOH$	
	C₄H ₉ OH — C₃Π ₇ COOH	1
	1	ĺ

32	(A) a) +3	1
	b) d ² sp ³ , octahedral	1/2+1/2
	c) Paramagnetic	1
	d) Yes,	1/2
		, _
	G a †	
	en Fe	
		4./
	cis form	1/2
	e) dichloridobis(ethane-1,2-diamine)iron(III) Chloride	1
	OR	
32	B)a) i) Tetraamminechloridonitrito-N-cobalt(III) chloride	1
	ii) Potassium hexacyanidoferrate(III)	1
	iii)Trioxalatochromate(III) ion	1
	b)	
	 The energy required to split the degenerate d-orbitals into two sets of orbitals. / 	1
	The difference of energy between the two sets of d-orbitals t₂g and eg due to the	1
	presence of ligands in a definite geometry	
	 The orbital splitting energies are not sufficiently large for forcing paring of 	
		1
	electrons.	
33	(Λ) (a) The cell reaction is	
	(A) (a) The cell reaction is	
	$Sn(s)+2H^{+}(aq)\rightarrow Sn^{2+}(aq)+H_{2}(q)$	1
	On(3) 211 (aq) 7011 (aq) 112(g)	
	0.050 [c-2+]	1
	$E_{Cell} = (E^{o}_{c} - E^{o}_{a}) - \frac{0.059}{2} log \frac{[Sn^{2+}]}{[H^{+}]^{2}}$	1
	$= [(0) - (-0.14)] - \frac{0.059}{2} \log \frac{0.004}{(0.02)^2}$	
	· · ·	
	= 0.14 - 0.0295 log 10	
	= 0.1105 V	1
		1
	b) (i) overpotential of O ₂	1
	(ii) Number of ions carrying current per unit volume decreases on dilution	1
	OR	
22		
33	B) a) At anode:	4.7
	Pb+SO ₄ ⁻² →PbSO ₄ +2e−	1/2
	At cathode:	
	PbO_2 + SO_4^{-2} +4H ⁺ +2e \rightarrow PbSO ₄ +2H ₂ O	1/2
	Overall reaction:	
	Pb+PbO₂+2 SO₄ ⁻² +4H ⁺ →2PbSO₄+2H₂O	1
	b)	'
	0.050 5 50.3+12 3	
	$E_{\text{Cell}} = E_{\text{Cell}}^{\circ} - \frac{0.059}{n} log \left[\frac{[Cr^{3+}]^2}{[Cr^2O7^2][H+]^{14}} \right]$	1
	Ecell = $1.33 - \frac{0.059}{6} \log (10^{-2})^2 / (10^{-2}) (1 \times 10^{-4})^{14}$	1
	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	$= 1.33 - \frac{0.059}{6} (54) \log 10$	
	$= 1.33 - 0.059 \times 9$	
	= 1.33 – 0.531	4
	= 0.799 V	1

अंकन योजना

MARKING SCHEME 2024-25

असाधन विज्ञाम (अस्तातक) CHEMISTRY (Theory)- 043 QP CODE 56/1/2

MM; 70

Q. No	त्रे तेथा . वि.दे	300
1	(B)	1
2	(C)	1
3	(B)	1
4	(A)	1
5	(D)	1
6	(C)	1 1
7	(D)	1
8	(A)	1
9	(A)	1
10	(C)	1
11	(C)	1
12	(B)	1
13	(D)	1
14	(B)	1
15	(B)	1
16	(A)	1
17	(a) $A = CH_3CH_2CN$; $B = CH_3CH_2 CH_2NH_2$ (b) $A = C_6H_5N^+_2Cl^-$;	½ x 4
18	B= A = Na ₂ CrO ₄ / 知味を刊り、まれれる B = Na ₂ Cr ₂ O ₇ / 和けられて きる別分之 C = K ₂ Cr ₂ O ₇ / 印芝原知の まままがる D = 1 ₂ / 3和別より	½ × 4 =2
19	• कम अभिक्रियावील • बन्डेंगल्डिहाइड में कार्किनिल समूह का कार्कि प्रमाणु प्रोपेनेल के कार्किनल समूह की तुलगा में कम इलेक्ट्रॉनरामी होता है विन्डे लिहाइड में अनुनाय के कारण कार्किनल समूह की अवता कम हा जाती है।	. 1
20	(A) प्रेशर अन्मर् के अंदर उत्य दाक के कारण, उत्तार के कारण भीजन की पक्रमा के कारण भीजन की पक्रमा है। के स्थान के विचलन के नियान के लिए में व्हित	1 12 11

		-
	31491	
20		
	(B) • द्रव व वाह्य प्रावस्था में संयादन समान होता है	
	2.	,
	तथा यह एक स्पर्ताप पर उन्नलते हैं।	7
)
	• अधिकतम् विष्णाकी स्थिरकवाद्यी	1
		1
	· 68% HNO3 + 32% H20 (31 पवा कोई अग्र 2 द हरण)	7
	(प्रतिवात की उपेश्न की ला स्पार्त है)	
	J. (1911) 3441 " 1 441 C)	
21	(a) द्विष्युतीय आया की उपास्तित / जिटर डांया	
	160 18 30 1 2 1 341 341 341 1 1 1 1 1 1 1 1 1 1 1 1 1	
	की उपास्त्रीत स्थिरवे खुत आकर्षण उत्पन्त करता है।	1
	र्पट्टीकरण के साथ डिक्टर आपन की सेर-पना	
	b) कार्बी किस लिक समूह और रेमीनो समूह दोनों	
	रिण कावा विस्तालक क्षेत्र है आर में भाग रामें हैं राजा	
	मा उपार्रियोर्न के कारण / डि.वटर आया	
	सर-पता की उपस्थिति के लारण त्रह अम्लें	
		1
	अरेर मारकों बीनों के साथ अंति किया कर	'
	समा है।	
	do using.	<u>'</u>
22	$\Pi = CRT = \frac{w_B RT}{M_B V}$	
	$\prod_{i=1}^{N} CR^{i} = \frac{1}{M_B V}$	¥ <u>1</u>
	म उल्लोस = म यूरिया	
	$C_G = C_U$	1/2
	$\frac{W_G}{M_G} = \frac{W_U}{M_U}$	1/2
	$\frac{wG}{180} = \frac{15}{60}$	
	180 60	
	$W_G = \frac{15 \times 180}{60}$	* 1
	$\begin{array}{c} WG = \begin{array}{c} 60 \\ = 45 g \end{array}$	" -
23	— +3 y	-
	E°Cell= E°cathode=E°anode	
	$=E^{\circ}_{Ag^{+}/Ag}-E^{\circ}_{Fe3^{+}/Fe2^{+}}$	
	= 0.80-0.77	1.0
	$= 0.03 \text{ V}$ $\triangle G^0 = -\text{nF } E^0 c_{\text{ell}}$	1/2 1/2
E .	$\Delta G^0 = -nF E^0 C_{ell}$ = -1 x 96500 X 0.03	/2
	= -2895 J/mol	
	= -2.895 KJ/ mol	1
	$\triangle G^0 = -2.303$ RT log Kc	1/2
	$\log Kc = -\Delta G^{0} / 2.303RT$	
	= 2895 / 2.303 x 8.314 X 298	L

	log Kc = 2895 / 5700 (3121) कोई 31-4 3 4 24 34 (1 विद्य)	1/2
24		,2
	(9) १- नाइट्रोरेनिलीन > रेजिलीन > p-मिलियेनिलीन	- 1
	(b)(i) अनुनाद स्थायीकरण के कारण	1
	ों) जल में मेजिलरेमीत सामक के कंप में	
	कार्य करता है और उम आया मुक्त करता	
	हे जो Fe CI3 के साथ द्वांत्राक्रिया कारक	1
	जलपाजित फेरिक झॉक्साइड बनाता है	
	रासायनिक समीकारण	
	21414110 HM19120)	
25	(A) (a)	
	Br	1
	CH ₃	
	(b)	
	Br CHs	,
		1
	(c)	
	CI	
	но	1
-	31 21 1	
25	(B)	
	(a) 2 Na	
	2 Ether - 2794CI	1
	delivia all	
	(b) 31\$ 9114 W	
	परीवर्गाङ्ड - CH3CH = CH2 + HBr - CH3CH2CH2Br	1
	NaI/ 274 214	
	CH3CH2CH2 1 (2) (2)	
	<u> </u>	L

	CH3-CH-CH2-CH3 (CM) E) E KOT1		
	अन्य देन । अयवा रेन पानारण की कोई अन्य उप	23 to 1	Cag
26.	(a) 324 DaH 377 Far AhydH°	1	
·	े दु अप (व में से व 3) / स्थायी अविप्रित t 2 g स्तर	1 1 2	
•	(C) पूर्ण-अस्त d- क्षमक, इसालिंग कोई d-d		
	की अनुपार्कात के कारण		
27	$t_{1/2} = \frac{0.693}{k}$		
	$k_{1} = \frac{0.693}{20} = 0.03465 / 3.465 \times 10^{-2} \text{ min}^{-1}$ $k_{2} = \frac{0.693}{5} = 0.1386 / 1.386 \times 10^{-1} \text{ min}^{-1}$	½ ½	
	$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$	1/2	
	$ \log \frac{0.1386}{0.03465} = \frac{Ea}{2.303 \times 8.314} \frac{[350 - 300]}{[350 \times 300]} \\ \log 4 = \frac{Ea}{19.15} \frac{[50]}{[350 \times 300]} $	1/2	
28	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
20	$ \begin{array}{ccc} \text{CHO} & \text{CH=N-OH} \\ \text{(CHOH)}_4 & \xrightarrow{\text{NH,OH}} & \text{(CHOH)}_4 \\ \text{CH}_2\text{OH} & \text{CH}_2\text{OH} \end{array} $	1	
	(ii)		

CHO \mathfrak{p} p	1
(b) विटिशान ८ जल निलेय है और मूत्र के साथ उत्मादीत है जाता है।	1
adus cu	
29 (a) (i) OH OH Br ₂ in CS ₂ 273 K Br A-annumation about 5	
(ii) OH OH OH NO ₂ O ₂ N NO ₂ O ₃ OH NO ₂ OH OH NO ₂ OH	न्त्र । न्त्र
(b) अनुनाद के कारण, ऑक्सीनम पर असहभाजित इलेक्स्न सुगल प्रोट्सनम के लिए आसानी	計 1
उपलब्ध नहीं होता है। (c) • फ्रीनॉल • मेपिल समूह के इलेक्ट्रॉन विमोन्त्र प्रगाव	1
(+I प्रगाव) के कारण / कीसील में निर्मित फ़ीरांक्साइड आया क्रम स्थायी होता है।	1
(C) 2- हाइड्राक्सी बन्जे ल्डिहाइड /2- हाइड्राक्सीबन्जीव कार्केट्डिहा इड	T -1
30 (क) मं असे भद्र पद	1

	(1) प्राथितिक अति क्रिया की श्रीस्वला / दी या अधिक	
	पदी वाली अिलाकिया	1
	b) ताप में वृद्धि के साथ वह जाता है।	,
		'
	31 21 0	
	(b) 37 गिर्व कता के बल प्रायमिक आमि। क्रिया के लिए ही	
~	परिमाधित होती है अविक अमि। क्रिया की को हि एक	
	प्रायोगिक जाता है अतः दोतें पर लागू होती है	
	क्यों कि अधिला अगि किया के लिस प्रत्येक प्राथितिक	
	अणिक्या की आणिकता मिन होते हैं अतः जिल	11
	उनिर्मा के लिए अणिकता का की की ती है।	
	क्लिक क्रिया की किया के लिए को है विश्वविध की सकी	
	अभिनेमा के लिए आण्विकता का कोई अर्घ नहीं होता क्रक्रि जायल अभिनेमा के लिए को हि क्रियोविण की सबसे मेर पद की होती है अतः केना पर जागर होती है।	
	() लोगा	,
31	403.5	+'
31	(A) (a) (i) OH	1
	$2CH_3 - C - H \xrightarrow{OH^-} CH_3 - CH_2 - CHO \xrightarrow{\Delta} CH_3 - CH = CH - CHO$	
	CH₃CH₂COOH + NaOH + CaO + heat → CH₃-CH₃ (ii)	1
	(b) A = (CH3)2CH=CHCH3/2-21919の24と - 2-まっ	1
	B = CH₃CHO / २१२ ते ल C = CH₃COCH₃/ २२१२ / १९ प्रोप्तात	1
	OR	<u> </u>
31	A= C3H7COOC4H9/ 02/16M 042 7) 22	1
	B= C3H7COOH/ 0427) 37 3120	1/2
	C= C4H9OH/ 02/29-1-3110H	16
	, and the second	1/2
	$C_3H_7COOC_4H_9+eF_9.H_2SO_4 \rightarrow C_3H_7COOH + C_4H_9OH$ $C_4H_9OH + eF_9.G. + eF_9.H_2CF_9.H_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2C$	1
	C ₄ H ₉ OH ————————————————————————————————————	1
22		1
32	(A)(a) +3	1
	b) d2sp3, 2102 many	1+1
	(c) अनु चुम्बकाम प्	
	\mathcal{A}	
	(d) हो, समप्र	1+1
	en (
	Cen	1
C 1 ~		

	(e) डाइ क्लोरिडोबिस (र्या-1,2-डाइरेमीत)आय्यत (111) क्लो	1753	
		1	
	उनधवी		
32	(B)(a) (i) ट्रेट्राचे म्मीनक्लोरिडो नाइ रिटो -N-कोबाल्ट (11) क्लो	1153	,
	(11) पीट शिम्म हम्सासायनि ही केरेट (11)	1	
	(111) राइ ऑक्सेलेटो क्रोमेट (111) आया	J	
	(b) अपम्राच्य त- कन्नकों को कन्नकों के ही रामुच्ययों में विपाटत के लिए आवश्यक	1	
	• क्रमकों की विपाटन उन्नी इतनी आंधिक नहीं होती जो इलेक्ट्रॉनों की युग्मन के लिए बाब्य करें !	1	
33	(A) (a) 317 5721		
	$Sn(s)+2H^{+}(aq) \rightarrow Sn^{2+}(aq)+H_{2}(g)$	1	
	$E_{Cell} = (E^{o}_{c} - E^{o}_{a}) - \frac{0.059}{2} log \frac{[Sn^{2+}]}{[H^{+}]^{2}}$	1	
	$= [(0) - (-0.14)] - \frac{0.059}{2} log \frac{0.004}{(0.02)^2}$		
	= 0.14 - 0.0295 log 10 = 0.1105 V	1	
	b) (i) 0 2 3 371 Widna an aniqui	1	
	(ii) तनुकरण करने पर प्रति इकाई आपता भें विद्युत्यारा के जाने वाले आयों की संख्या वार जाती है)	1	

	3/4di	
33	B) a) → → PbSO ₄ +2e-	1/2
	PbO ₂ + SO ₄ -2+4H++2e-→PbSO ₄ +2H ₂ O → オンニージョン・デュー Pb+PbO ₂ +2 SO ₄ -2+4H+ - → 2PbSO ₄ +2H ₂ O b)	½ 1
	Ecell = $1.33 - \frac{0.059}{6} \log \left[\frac{[cr3^+]2}{[cr207^{2-}][H+]^{14}} \right]$ Ecell = $1.33 - \frac{0.059}{6} \log (10^{-2})^2 / (10^{-2}) (1 \times 10^{-4})^{14}$	1 1
	$= 1.33 - \frac{0.059}{6} (54) \log 10$ $= 1.33 - 0.059 \times 9$	
	= 1.33 - 0.531 = 0.799 V	1