

Series: ZYWX1

रोल नं.

प्रश्न-पत्र कोड Q.P. Code 56

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

नोट / NOTE

कृपया जाँच कर लें कि इस प्रश्न-पत्र में मृद्रित पृष्ठ 23 हैं। (I)

Please check that this question paper contains 23 printed pages.

कपया जाँच कर लें कि इस प्रश्न-पत्र में 33 प्रश्न हैं। (II)

Please check that this question paper contains 33 questions.

- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पुष्ठ पर लिखें । (III) Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथा स्थान पर प्रश्न का क्रमांक अवश्य (IV) लिखें ।

Please write down the serial number of the question in the answerbook at the given place before attempting it.

इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 (V) बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।

15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धांतिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे

Time allowed: 3 hours

अधिकतम अंक : 70

Maximum Marks: 70

······

56/1/1

730-1

1

P.T.O.

सामान्य निर्देश:

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए:

- (i) इस प्रश्न-पत्र में 33 प्रश्न हैं। **सभी** प्रश्न अनिवार्य हैं।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है खण्ड **क, ख, ग, घ** तथा **ङ**।
- (iii) खण्ड क प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) **खण्ड ख -** प्रश्न संख्या 17 से 21 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 2 अंकों का है ।
- (v) **खण्ड ग -** प्रश्न संख्या 22 से 28 तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 3 अंकों का है।
- (vi) **खण्ड घ -** प्रश्न संख्या **29** तथा **30** प्रकरण आधारित प्रश्न हैं। प्रत्येक प्रश्न **4** अंकों का है।
- (vii) **खण्ड ङ –** प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड **क** के अतिरिक्त अन्य सभी खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग **वर्जित** है।

जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$c = 3 \times 10^8 \text{ m/s}$$

$$h = 6.63 \times 10^{-34} \text{ Js}$$

$$e = 1.6 \times 10^{-19} C$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$$

$$\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$$

$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \ N \ m^2 \ C^{-2}$$

इलेक्ट्रॉन का द्रव्यमान (m_e) = 9.1×10^{-31} kg.

न्यूट्रॉन का द्रव्यमान =
$$1.675 \times 10^{-27} \text{ kg}$$
.

प्रोटॉन का द्रव्यमान =
$$1.673 \times 10^{-27} \text{ kg}$$
.

आवोगाद्रो संख्या =
$$6.023 \times 10^{23}$$
 प्रति ग्राम मोल

बोल्ट्ज़मान नियतांक =
$$1.38 \times 10^{-23} \, \mathrm{JK^{-1}}$$

General Instructions:

Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into five sections Section A, B, C, D and E.
- (iii) Section A questions number 1 to 16 are multiple choice type questions. Each question carries 1 mark.
- (iv) Section B questions number 17 to 21 are very short answer type questions. Each question carries 2 marks.
- (v) **Section** C questions number **22** to **28** are short answer type questions. Each question carries **3** marks.
- (vi) Section D questions number 29 and 30 are case-based questions. Each question carries 4 marks.
- (vii) Section E questions number 31 to 33 are long answer type questions. Each question carries 5 marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the sections except Section -A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculator is **NOT** allowed.

You may use the following values of physical constants wherever necessary:

$$c = 3 \times 10^8 \text{ m/s}$$

$$h = 6.63 \times 10^{-34} \text{ Js}$$

$$e = 1.6 \times 10^{-19} \text{ C}$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$$

$$\epsilon_0 = 8.854 \times 10^{-12}~\mathrm{C^2~N^{-1}~m^{-2}}$$

$$\frac{1}{4\pi\epsilon_0}$$
 = 9 × 10⁹ N m² C⁻²

Mass of electron (m_e) = 9.1×10^{-31} kg.

Mass of neutron = 1.675×10^{-27} kg.

Mass of proton = 1.673×10^{-27} kg.

Avogadro's number = 6.023×10^{23} per gram mole

Boltzmann's constant = $1.38 \times 10^{-23} \, \mathrm{JK^{-1}}$

खण्ड – क

 $(16 \times 1 = 16)$

प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के 1 अंक के प्रश्न हैं।

- संगुणन में विलेय का अपसामान्य मोलर द्रव्यमान
 - (A) बढेगा

(B) घटेगा

(C) अपरिवर्तित रहेगा

- (D) पहले बढ़ेगा और फिर घटेगा
- ${
 m Sn^{4+}/Sn^{2+}}$ युग्म के लिए मानक इलेक्ट्रोड विभव $+0.15~{
 m V}$ और ${
 m Cr^{3+}/Cr}$ युग्म के लिए यह 2. $-0.74~{
 m V}$ है। दो युग्म अपनी मानक अवस्थाओं में संयोजित होकर एक सेल का निर्माण करते हैं। सेल विभव होगा
 - (A) +1.19 V

(B) +0.89 V

(C) +0.18 V

- (D) +1.83 V
- चुंबकीय आघूर्ण इसके प्रचक्रणी कोणीय संवेग और कक्षीय कोणीय संवेग से जुड़ा होता है । ${
 m Cr}^{3+}$ आयन 3. (परमाणु क्रमांक : $\mathrm{Cr}=24$) का प्रचक्रण मात्र चुंबकीय आधूर्ण मान _____ है।
 - (A) 2.87 B.M.

(B) 3.87 B.M.

(C) 3.47 B.M.

- (D) $3.57 \; B.M.$
- अम्लीय KMnO4 सल्फाइट को ऑक्सीकृत कर देता है 4.

(A) $S_2O_3^{2-}$ \ddot{H}

(B) $S_2O_8^{2-} \dot{\vec{\eta}}$ (D) $SO_4^{2-} \dot{\vec{\eta}}$

(C) $SO_2(g)$ में

- ${
 m [Pt(NH_3)_2C} l_2 {
 m]}^{2+}$ का सही ${
 m IUPAC}$ नाम है 5.
 - (A) डाइऐम्मीनडाइक्लोरिडोप्लैटिनम (II)
 - (B) डाइऐम्मीनडाइक्लोरिडोप्लैटिनम (IV)
 - (C) डाइऐम्मीनडाइक्लोरिडोप्लैटिनम (O)
 - (D) डाइऐम्मीनडाइक्लोरिडोप्लैटिनेट (IV)
- निम्नलिखित यौगिकों को उनके क्वथनांक के बढ़ते क्रम में व्यवस्थित करें : 6.

सही क्रम है

 $(A) \quad (ii) < (i) < (iii)$

(B) (i) < (ii) < (iii)

(C) (iii) < (i) < (ii)

(iii) < (ii) < (i)(D)

SECTION - A

 $(16 \times 1 = 16)$

Questions No. 1 to 16 are Multiple Choice type questions carrying 1 mark

- 1. In case of association, abnormal molar mass of solute will
 - (A) increase

decrease (B)

(C) remain same

- (D) first increase and then decrease
- 2. Standard electrode potential for Sn⁴⁺/Sn²⁺ couple is +0.15 V and that for the Cr^{3+}/Cr couple is -0.74 V. The two couples in their standard states are connected to make a cell. The cell potential will be
 - (A) +1.19 V

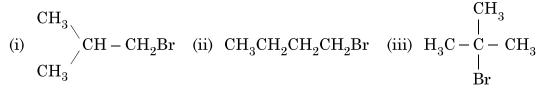
(B) +0.89 V

(C) +0.18 V

- (D) +1.83 V
- The magnetic moment is associated with its spin angular momentum and 3. orbital angular momentum. Spin only magnetic moment value of Cr³⁺ ion (Atomic no. : Cr = 24) is
 - (A) 2.87 B.M.

(B) 3.87 B.M.

(C) 3.47 B.M.


- (D) $3.57 \; \text{B.M.}$
- Acidified $KMnO_4$ oxidises sulphite to

(A) $S_2O_3^{2-}$

(B) $S_2O_8^{2-}$ (D) SO_4^{2-}

(C) $SO_{2}(g)$

- The correct IUPAC name of $[Pt(NH_2)_2Cl_2]^{2+}$ is 5.
 - (A) Diamminedichloridoplatinum (II)
 - (B) Diamminedichloridoplatinum (IV)
 - (C) Diamminedichloridoplatinum (O)
 - (D) Diamminedichloridoplatinate (IV)
- 6. Arrange the following compounds in increasing order of their boiling points:

The correct order is

(A) (ii) < (i) < (iii)

(B) (i) < (ii) < (iii)

(C) (iii) < (i) < (ii)

(iii) < (ii) < (i)

7.	नाभिव	न्रागी द्विआणविक प्रतिस्थापन अभिक्रिया से गु	जरने वा	ले ऐल्किल हैलाइड में सम्मिलित है
	(A)	विन्यास का धारण	(B)	रेसिमिक मिश्रण का बनना
	(C)	विन्यास का प्रतिलोमन	(D)	कार्बोधनायन का निर्माण
8.	निम्नि	लेखित में अम्ल सामर्थ्य का सही क्रम कौन सा	है ?	
	(A)	$\mathrm{C_6H_5OH} > \mathrm{H_2O} > \mathrm{ROH}$	(B)	$\mathrm{C_6H_5OH} > \mathrm{ROH} > \mathrm{H_2O}$
	(C)	$\mathrm{ROH} > \mathrm{C_6H_5OH} > \mathrm{H_2O}$	(D)	$\mathrm{H_2O} > \mathrm{C_6H_5OH} > \mathrm{ROH}$
9.	प्रोपिल	त मैग्नीशियम ब्रोमाइड को CO_2 के साथ अभि	क्रियित	करने के पश्चात् अम्ल जलअपघटन करने पर
	बनने व	त्राला अम्ल है		
	(A)	C_3H_7COOH	(B)	$\mathrm{C_2H_5COOH}$
	(C)	$\mathrm{CH_{3}COOH}$	(D)	C_3H_7OH
10.	प्रोपेनेम	गाइड को प्रोपेनेमीन में परिवर्तित करने के लिए स	गबसे उन	तम अभिकर्मक है ।
	(A)	${ m H_2}$ का आधिक्य		
	(B)	जलीय NaOH में Br_2		
	(C)	लाल फॉस्फोरस की उपस्थिति में आयोडीन		
	(D)	ईथर में ${ m LiA} l{ m H}_4$		
11.	निम्नि	लेखित में से कौन सा कथन ग्लूकोज़ के विषय मे	ां सत्य र	नहीं है ?
	(A)	यह एक एल्डोहेक्सोस है।		
	(B)	HI के साथ गर्म करने पर यह n-हेक्सेन बनात	ा है ।	
	(C)	यह फ्यूरेनोस रूप में उपस्थित होता है।		
	(D)	यह शिफ-परीक्षण नहीं देता है।		
12.	अचार	बनाने के लिए नमक के सांद्र विलयन में रखा ग	ाया कच	वा आम सिकुड़ जाता है, क्योंकि
	(A)	यह परासरण के कारण जल प्राप्त करता है।		
	(B)	यह उत्क्रम परासरण के कारण जल खो देता है	1	
	(C)	यह उत्क्रम परासरण के कारण जल प्राप्त करत	ा है ।	
	(D)	यह परासरण के कारण जल खो देता है।		
	•			·····
56/1/	6/1/1 ~ 6 ~			

7.	Alky		ilic bi	molecular substitution reaction
	(A)	retention of configuration	(B)	formation of racemic mixture
	` ′	inversion of configuration	` ′	formation of carbocation
8.	Whi	ch is the correct order of acid st	rength	from the following?
		$C_6H_5OH > H_2O > ROH$		$C_6H_5OH > ROH > H_2O$
		° ° -		$H_2O > C_6H_5OH > ROH$
9.	The	acid formed when propyl mag	nesiui	m bromide is treated with CO ₂
		owed by acid hydrolysis is:	,	2
		C_3H_7COOH	(B)	$\mathrm{C_2H_5COOH}$
		CH ₃ COOH		C_3H_7OH
10.	The	best reagent for converting	prop	anamide into propanamine is
	(A)	${\rm excess}\ {\rm H_2}$		
	(B)	Br_2 in aqueous NaOH		
	(C)	iodine in the presence of red pl	ospho	rus
	(D)	${ m LiA} l{ m H}_4$ in ether		
11.	Whi	ch of the following statements is	s not ti	rue about glucose?
	(A)	It is an aldohexose.		
	(B)	On heating with HI it forms n-	hexan	e.
	(C)	It exists in furanose form.		
	(D)	It does not give Schiff's test.		
12.			ntrate	d salt solution to prepare pickle,
		vels because		
	(A)	it gains water due to osmosis		
	(B)	it loses water due to reverse os		
	(C)	it lases water due to reverse of	smosis	
	(D)	it loses water due to osmosis		
56/1	/1	~	7 ~	P.T.O
	_			1110

प्रश्न संख्या 13 से 16 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है । इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए :

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) गलत है।
- (D) अभिकथन (A) गलत है, परन्तु कारण (R) सही है।
- 13. अभिकथन (A) : $[Cr(H_2O)_6]Cl_2$ तथा $[Fe(H_2O)_6]Cl_2$ होमोलेप्टिक संकुल के उदाहरण हैं ।
 - कारण (R) : धातु के साथ जुड़े सभी लिगैन्ड एक प्रकार के हैं।
- 14. **अभिकथन (A)** : ऐल्किल हैलाइडों के क्वथनांक निम्न क्रम में घटते हैं : RI > RBr > RCl > RF।
 - कारण (R) : ऐल्किल क्लोराइड, ब्रोमाइड और आयोडाइड के क्वथनांक तुलनीय आण्विक

द्रव्यमान वाले हाइड्रोकार्बन की तुलना में काफी अधिक होते हैं।

- 15. **अभिकथन (A)** : एथेनॉल का क्वथनांक मेथॉक्सीमेथेन से अधिक होता है।
 - कारण (R) : एथेनॉल में अंतः अणुक हाइड्रोजन बंध होता है।
- 16. **अभिकथन (A)** : ग्लाइसीन के अतिरिक्त सभी प्राकृतिक रूप से पाए जाने वाले α -ऐमीनो अम्ल ध्रवण घूर्णक होते हैं ।
 - कारण (R) : अधिकांश प्राकृतिक रूप से पाए जाने वाले ऐमीनो अम्लों में L-विन्यास होता है।

For questions number 13 to 16, two statements are given – one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below:

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- 13. Assertion (A) : $[Cr(H_2O)_6]Cl_2$ and $[Fe(H_2O)_6]Cl_2$ are examples of homoleptic complexes.
 - **Reason (R)** : All the ligands attached to the metal are the same.
- 14. **Assertion (A)**: The boiling points of alkyl halides decrease in the order: RI > RBr > RCl > RF.
 - Reason (R): The boiling points of alkyl chlorides, bromides and iodides are considerably higher than that of the hydrocarbon of comparable molecular mass.
- 15. **Assertion (A)**: The boiling point of ethanol is higher than that of methoxymethane.
 - **Reason (R)**: There is intramolecular hydrogen bonding in ethanol.
- 16. Assertion (A): All naturally occurring α-amino acids except glycine are optically active.
 - Reason (R) : Most naturally occurring amino acids have L-configuration.

खण्ड – ख

17. (A) कारण बताइए:

(1+1=2)

- (a) प्रेशर-कुकर में खाना पकाना, खुले बर्तन (कड़ाही) की तुलना में तेज़ होता है।
- (b) द्रव X और द्रव Y को मिलाने पर, परिणामी विलयन का आयतन कम हो जाता है। परिणामी विलयन राउल्ट के नियम से किस प्रकार का विचलन दर्शाता है ? द्रव X और Y को मिलाने के बाद आप ताप में क्या परिवर्तन प्रेक्षित करेंगे ?

अथवा

- (B) स्थिरक्वाथी को परिभाषित करें । राउल्ट के नियम में ऋणात्मक विचलन से किस प्रकार का स्थिरक्वाथी बनता है ? एक उदाहरण दीजिए।
- 18. निम्नलिखित रासायनिक समीकरण को पूर्ण एवं संतुलित कीजिए :

 $\mathbf{2}$

2

- (a) $2\text{MnO}_{4}^{-}(\text{aq}) + 10\text{I}^{-}(\text{aq}) + 16\text{H}^{+}(\text{aq}) \longrightarrow$
- (b) $\operatorname{Cr}_2\operatorname{O}_7^{2-}(\operatorname{aq}) + 6\operatorname{Fe}^{2+}(\operatorname{aq}) + 14\operatorname{H}^+(\operatorname{aq}) \longrightarrow$
- 19. क्या आप अपेक्षा करते हैं कि प्रोपेनल की तुलना में बेंजैल्डिहाइड नाभिकरागी योगज अभिक्रियाओं में अधिक अभिक्रियाशील या कम अभिक्रियाशील होगा ? अपना उत्तर स्पष्ट कीजिए।
- 20. निम्नलिखित प्रत्येक अनुक्रम अभिक्रिया में A और B की पहचान कीजिए : (1+1=2)
 - (a) $CH_3CH_2Cl \xrightarrow{NaCN} A \xrightarrow{H_2/Ni} B$
 - $\text{(b)} \quad \mathrm{C_6H_5NH_2} \xrightarrow[0-5\ ^{\circ}\mathrm{C}]{} \mathrm{A} \xrightarrow[H^+]{} \mathrm{C_6H_5NH_2} \mathrm{B}$
- $21. \;\;\; ext{D-ग्लूकोज़ को निम्नलिखित अभिकर्मकों के साथ अभिक्रियित करने पर होने वाली अभिक्रियाएँ लिखिए :$

(1+1=2)

- (a) HCN
- (b) Br_2 जल

SECTION - B

17. (A) Give reasons:

(1+1=2)

- (a) Cooking is faster in pressure cooker than in an open pan.
- (b) On mixing liquid X and liquid Y, volume of the resulting solution decreases. What type of deviation from Raoult's law is shown by the resulting solution? What change in temperature would you observe after mixing liquids X and Y?

OR.

(B) Define Azeotrope. What type of Azeotrope is formed by negative deviation from Raoult's law? Give an example.

2

18. Complete and balance the following chemical equations:

2

(a)
$$2\text{MnO}_{4}^{-}(\text{aq}) + 10\Gamma(\text{aq}) + 16\text{H}^{+}(\text{aq}) \longrightarrow$$

(b)
$$\operatorname{Cr}_2 \operatorname{O}_7^{2-}(\operatorname{aq}) + 6\operatorname{Fe}^{2+}(\operatorname{aq}) + 14\operatorname{H}^+(\operatorname{aq}) \longrightarrow$$

- 19. Would you expect benzaldehyde to be more reactive or less reactive in nucleophilic addition reactions than propanal? Justify your answer.
- 20. Identify A and B in each of the following reaction sequence: (1 + 1 = 2)

(a)
$$CH_3CH_2Cl \xrightarrow{NaCN} A \xrightarrow{H_2/Ni} B$$

(b)
$$C_6H_5NH_2 \xrightarrow{NaNO_2/HCl} A \xrightarrow{C_6H_5NH_2} B$$

- 21. Write the reactions involved when D-glucose is treated with the following reagents: (1 + 1 = 2)
 - (a) HCN
 - (b) Br₂ water

P.T.O.

खण्ड - ग

- 22. जल में ग्लूकोस (मोलर द्रव्यमान = $180~{
 m g~mol^{-1}}$) के विलयन का क्वथनांक $100.20~{
 m ^{\circ}C}$ है । 3सी विलयन के हिमांक की गणना करें । पानी के लिए, $K_{
 m f}$ और $K_{
 m b}$ मोलल स्थिरांक क्रमशः $1.86~{
 m K~kg~mol^{-1}}$ और $0.512~{
 m K~kg~mol^{-1}}$ हैं ।
- 3

23. (a) निम्न को समझाइए:

3

- (i) आयनों के स्वतंत्र अभिगमन का कोलराऊश नियम
- (ii) फैराडे के विद्युत्-अपघटन का प्रथम नियम
- (b) नीचे दिए गए E° मानों का उपयोग करते हुए, प्रागुक्ति कीजिए कि संक्षारण रोकने के लिए लोहे की सतह पर लेपन के लिए कौन-सा बेहतर है और क्यों।

दिया गया है :
$$E_{X^{2^+/\! X}}^{\circ}$$
 = $-2.36~{
m V},$
$$E_{Y^{2^+/\! Y}}^{\circ}$$
 = $-0.14~{
m V},$
$$E_{{
m Fe}^{2^+/\! Fe}}^{\circ}$$
 = $-0.44~{
m V}$

24. कोई अभिक्रिया 300 K पर 20 मिनट में 50% पूर्ण हो जाती है और वही अभिक्रिया 350 K पर 5 मिनट में 50% पूर्ण हो जाती है। यदि यह अभिक्रिया प्रथम कोटि की है तो सक्रियण ऊर्जा की गणना कीजिए।

 $[R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}; \log 4 = 0.602]$

25. 3d संक्रमण श्रेणी के तत्व इस प्रकार दिए गए हैं:

(1+1+1=3)

3

Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn निम्नलिखित का उत्तर दीजिए :

- (a) कॉपर का ${
 m E}_{{
 m M}^{2+}/{
 m M}}^{\circ}$ मान असाधारण रूप से धनात्मक है, क्यों ?
- (b) कौन सा तत्व +2 ऑक्सीकरण अवस्था में एक प्रबल अपचायक है और क्यों ?
- (c) Zn^{2+} लवण रंगहीन होते हैं, क्यों ?

·····

SECTION - C

22. A solution of glucose (molar mass = 180 g mol⁻¹) in water has a boiling point of 100.20 °C. Calculate the freezing point of the same solution. Molal constants for water K_f and K_b are 1.86 K kg mol⁻¹ and 0.512 K kg mol⁻¹ respectively.

3

23. (a) State the following:

3

- (i) Kohlrausch law of independent migration of ions and
- (ii) Faraday's first law of electrolysis.
- (b) Using $E_{\text{values}}^{\circ}$ of X and Y given below, predict which is better for coating the surface of iron to prevent corrosion and why?

Given $E_{X^{2+}/X}^{\circ} = -2.36 \text{ V},$

$$E_{V^{2+}/V}^{\circ} = -0.14 \text{ V},$$

$$E_{Fe^{2+}/Fe}^{\circ} = -0.44 \text{ V}$$

24. A certain reaction is 50% complete in 20 minutes at 300 K and the same reaction is 50% complete in 5 minutes at 350 K. Calculate the activation energy if it is a first order reaction.

3

$$[R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}; \log 4 = 0.602]$$

25. The elements of 3d transition series are given as:

(1+1+1=3)

Answer the following:

- (a) Copper has exceptionally positive $E_{M^{2+}\!/\!M}^{\circ}$ value, why ?
- (b) Which element is a strong reducing agent in +2 oxidation state and why?
- (c) Zn^{2+} salts are colourless. Why?

P.T.O.

26. (A) निम्नलिखित प्रत्येक अभिक्रिया के लिए प्रमुख मोनोहैलो उत्पाद की संरचना बनाइये : (1+1+1=3)

(a)
$$Cl$$
 $CH_2 - CH_3$ Br_2 , ऊष्मा $?$

(b)
$$CH_3^+ HBr \longrightarrow ?$$

$$(c)$$
 HO – H_2C \longrightarrow OH \longrightarrow PCl , ऊष्मा \longrightarrow ?

अथवा

(B) आप कैसे रूपांतरित करेंगे ?

 $(3\times 1=3)$

- (a) क्लोरोबेन्ज़ीन को बाईफेनिल में
- (b) प्रोपीन को 1-आयडोप्रोपेन में
- (c) 2-ब्रोमोब्यूटेन को ब्यूट-2-ईन में
- 27. (a) निम्नलिखित यौगिकों को उनके क्वथनांक के बढ़ते क्रम में व्यवस्थित करें : $(CH_3)_2NH, \ CH_3CH_2NH_2, \ CH_3CH_2OH$
 - (b) निम्नलिखित में से प्रत्येक के लिए संभावित स्पष्टीकरण दीजिए:
 - (i) ऐरोमैटिक प्राथमिक ऐमीनों को गैब्रिएल थैलिमाइड संश्लेषण से नहीं बनाया जा सकता।
 - (ii) एमाइड, ऐमीनों की तुलना में कम क्षारकीय होते हैं।
- 28. (a) प्राकृत प्रोटीन और विकृत प्रोटीन में क्या अंतर है ?

(1+1+1=3)

- (b) निम्नलिखित में से कौन सा एक डाइसैकैराइड है ? ग्लूकोज़, लैक्टोज़, ऐमिलोज़, फ्रक्टोज़
- (c) रक्त के जमने के लिए उत्तरदायी विटामिन कौन सा है ?

26. (A) Draw the structure of the major monohalo product for each of the following reaction: (1+1+1=3)

(a)
$$Cl$$
 $CH_2 - CH_3$ Br_2 , $Heat$?

(b)
$$CH_3^+ HBr \longrightarrow ?$$

(c)
$$HO - H_2C$$
 OR HCl , $Heat$?

(B) How do you convert:

 $(3 \times 1 = 3)$

- (a) Chlorobenzene to biphenyl
- (b) Propene to 1-Iodopropane
- (c) 2-bromobutane to but-2-ene.
- 27. (a) Arrange the following compounds in increasing order of their boiling point: $(CH_3)_2NH, CH_3CH_2NH_2, CH_3CH_2OH.$
 - (b) Give plausible explanation for each of the following :
 - (i) Aromatic primary amines cannot be prepared by Gabriel Phthalimide synthesis.
 - (ii) Amides are less basic than amines.
- 28. (a) What is the difference between native protein and denatured protein?

(1+1+1=3)

- (b) Which one of the following is a disaccharide? Glucose, Lactose, Amylose, Fructose
- (c) Which vitamin is responsible for the coagulation of blood?

खण्ड – घ

निम्नलिखित प्रश्न प्रकरण आधारित प्रश्न है । परिच्छेद को ध्यानपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए ।

29. रासायनिक अभिक्रिया का वेग या तो प्रित इकाई समय में अभिकारक की सांद्रता में कमी या उत्पाद की सांद्रता में वृद्धि के रूप में व्यक्त किया जाता है। अभिक्रिया का वेग अभिकारकों की प्रकृति, अभिकारकों की सांद्रता, तापमान, उत्प्रेरक की उपस्थिति, अभिकारकों के पृष्ठीय क्षेत्रफल और प्रकाश की उपस्थिति पर निर्भर करता है। अभिक्रिया का वेग अभिकारक की सांद्रता से सीधे संबंधित होता है। वेग नियम बताता है कि अभिक्रिया का वेग सांद्रता पदों पर निर्भर करता है जिस पर अभिक्रिया का वेग वास्तव में निर्भर करता है, जैसा कि प्रयोगात्मक रूप से देखा गया है। वेग नियम अभिव्यक्ति में अभिकारकों की सांद्रता की घातों के योग को अभिक्रिया की कोटि कहा जाता है जबिक एक प्राथमिक अभिक्रिया में भाग लेने वाली स्पीशीज़ की संख्या जो रासायनिक अभिक्रिया सम्पन्न करने के लिए एक साथ संघट्ट करती है, अभिक्रिया की आण्विकता कहलाती है।

निम्न प्रश्नों के उत्तर दीजिए:

(a) (i) वेग निर्धारक पद क्या है ?

(1 + 1 = 2)

1

1

- (ii) जटिल अभिक्रिया को परिभाषित कीजिए।
- (b) वेग स्थिरांक पर ताप का क्या प्रभाव पड़ता है ?

अथवा

- (b) आण्विकता केवल प्राथमिक अभिक्रियाओं के लिए ही क्यों लागू होती है जबिक कोटि प्राथमिक और जटिल अभिक्रिया दोनों के लिए लागू होती हैं ?
- (c) अणु X का Y में रूपांतरण द्वितीय कोटि की बलगतिकी के अनुरूप होता है । यदि X की सांद्रता तीन गुनी कर दी जाए तो Y के निर्माण होने के वेग पर क्या प्रभाव पड़ेगा ?

SECTION - D

The following questions are case based questions. Read the passage carefully and answer the questions that follow.

29. The rate of a chemical reaction is expressed either in terms of decrease in the concentration of reactants or increase in the concentration of a product per unit time. Rate of the reaction depends upon the nature of reactants, concentration of reactants, temperature, presence of catalyst, surface area of the reactants and presence of light. Rate of reaction is directly related to the concentration of reactant. Rate law states that the rate of reaction depends upon the concentration terms on which the rate of reaction actually depends, as observed experimentally. The sum of powers of the concentration of the reactants in the Rate law expression is called order of reaction while the number of reacting species taking part in an elementary reaction which must collide simultaneously in order to bring about a chemical reaction is called molecularity of the reaction.

Answer the following questions:

- (a) (i) What is a rate determining step?
 - (ii) Define complex reaction.
- (b) What is the effect of temperature on the rate constant of a reaction?

(1+1=2)

1

1

OR

- (b) Why is molecularity applicable only for elementary reactions whereas order is applicable for elementary as well as complex reactions?
- (c) The conversion of molecule X to Y follows second order kinetics. If concentration of X is increased 3 times, how will it affect the rate of formation of Y?

56/1/1 $\sim 17 \sim$ P.T.O.

30. बेन्जीन वलय से जुड़े OH समूह के प्रबल सक्रियण प्रभाव के कारण फ़ीनॉल आसानी से इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाएँ देते हैं । चूँिक OH समूह o— और p— स्थितियों पर इलेक्ट्रॉन घनत्व को अधिक बढ़ाता है, इसिलए OH समूह ऑथों और पैरा निर्देशक होता है । राइमर-टीमन इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रिया के उदाहरण में से एक है । जिसके द्वारा फ़ीनॉल की एरोमैटिक वलय में हाइड्रॉक्सिल समूह की ऑथों स्थिति पर एल्डिहाइड समूह प्रवेश कर जाता है । यह एक सामान्य विधि है जो फ़ीनॉलों के ऑथों फार्मिलन के लिए प्रयुक्त की जाती है ।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

(a) क्या होता है जब फ़ीनॉल निम्न से अभिक्रिया करता है ?

 $\mathbf{2}$

- (i) Br_2/CS_2
- (ii) सांद्र HNO₃
- (b) फ़ीनॉल का प्रोटॉनन आसानी से क्यों नहीं होता है ?

1

(c) कौन सा एक प्रबल अम्ल है : फ़ीनॉल अथवा क्रीसॉल ? कारण दीजिए ।

1

अथवा

(c) राइमर-टीमन अभिक्रिया में बनने वाले उत्पाद का IUPAC नाम लिखें।

1

खण्ड – ङ

31. (A) (a) निम्नलिखित के लिए सेल अभिक्रिया लिखिए तथा $298~{
m K}$ पर सेल का ${
m e.m.f.}$ (3 + 2 = 5)

 $Sn(s)\,|\,Sn^{2+}\,(0.004\;\mathrm{M})\,|\,|\,H^{+}\,(0.02\;\mathrm{M})\,|\,H_{2}(g)\,(1\;Bar)\,|\,Pt\,(s)$

(दिया गया है : $E_{\mathrm{Sn}^{2+}\!/\mathrm{Sn}}^{\circ}$ = $-0.14~\mathrm{V},~E_{\mathrm{H}+|\mathrm{H}_{2}(\mathrm{g}),~\mathrm{Pt}}^{\circ}$ = $0.00\mathrm{V})$

18 ~

30. Phenols undergo electrophilic substitution reactions readily due to the strong activating effect of OH group attached to the benzene ring. Since, the OH group increases the electron density more to o— and p— positions therefore OH group is ortho, para-directing. Reimer-Tiemann reaction is one of the examples of aldehyde group being introduced on the aromatic ring of phenol, ortho to the hydroxyl group. This is a general method used for the ortho-formylation of phenols.

Answer the following questions:

(a) What happens when phenol reacts with

 $\mathbf{2}$

- (i) Br_2/CS_2
- (ii) Conc. HNO₃
- (b) Why phenol does not undergo protonation readily?

1

(c) Which is a stronger acid – phenol or cresol? Give reason.

1

OR

(c) Write the IUPAC name of the product formed in the Reimer-Tiemann reaction.

1

SECTION - E

31. (A) (a) Write the cell reaction and calculate the e.m.f. of the following cell at 298 K: (3 + 2 = 5)

 $\rm Sn(s)\,|\,Sn^{2+}\,(0.004\;M)\,|\,|\,H^{+}\,(0.02\;M)\,|\,H_{2}(g)\,(1\;Bar)\,|\,Pt\,(s)$

(Given :
$$E_{Sn^{2+}/Sn}^{\circ} = -0.14 \text{ V}, E_{H+|H_2(g), Pt}^{\circ} = 0.00 \text{V}$$
)

- (b) निम्नलिखित के कारण बताइए:
 - (i) ${
 m E}^{\circ}$ मानों के आधार पर, ${
 m O}_2$ गैस एनोड पर मुक्त होनी चाहिए, लेकिन जलीय ${
 m NaC}l$ के विद्युत अपघटन में ${
 m C}l_2$ गैस मुक्त होती है ।
 - (ii) तनुकरण पर $\mathrm{CH_{3}COOH}$ की चालकता कम हो जाती है।

अथवा

- 31. (B) (a) लेड स्टोरेज बैटरी के उपयोग के दौरान होने वाली ऐनोड और कैथोड अभिक्रियाएँ और समग्र सेल अभिक्रिया लिखें। (2 + 3 = 5)
 - (b) $0.01~{\rm M}~{\rm K_2Cr_2O_7(aq)},~0.01~{\rm M}~{\rm Cr^{3+}(aq)}$ और $1.0\times10^{-4}~{\rm M}~{\rm H^+(aq)}$ युक्त अर्ध सेल के लिए विभव की गणना करें।

अर्ध-सेल अभिक्रिया है :

$${
m Cr_2O_7^{2-}(aq)+14H^+(aq)+6e^-}\longrightarrow 2{
m Cr^{3+}(aq)+7H_2O(\it l)}$$
 और मानक इलेक्ट्रोड विभव ${
m E^\circ=1.33~V}$ दिया गया है ।
$${
m [दिया~ 12l \ rdl]}$$

32. (A) निम्नलिखित के उत्तर दीजिए:

(a) निम्न प्रचक्रण चतुष्फलकीय संकुल क्यों नहीं बनते ?

(b) प्रबल लिगैंड की उपस्थिति में Co^{2+} आसानी से Co^{3+} में ऑक्सीकृत हो जाता है । [परमाणु संख्या $\mathrm{Co}=27$] 5

- (c) $[Co(NH_3)_6][Cr(CN)_6]$ संकुल द्वारा किस प्रकार की समावयवता दर्शाई जाती है ?
- (d) $[Ni(H_2O)_6]^{2+}$ का विलयन हरा क्यों होता है जबिक $[Ni(CN)_4]^{2-}$ का विलयन रंगहीन होता है ? (Ni की परमाणु संख्या = 28)
- (e) निम्नलिखित संकुल का IUPAC नाम लिखिए : $[Co(NH_3)_5(CO_3)]Cl$

अथवा

- (b) Account for the following;
 - (i) On the basis of E° values, O_2 gas should be liberated at anode but it is Cl_2 gas which is liberated in the electrolysis of aqueous NaCl.
 - (ii) Conductivity of CH₃COOH decreases on dilution.

OR

- 31. (B) (a) Write the anode and cathode reactions and the overall cell reaction occurring in a lead storage battery during its use. (2 + 3 = 5)
 - (b) Calculate the potential for half-cell containing 0.01 M $\rm K_2Cr_2O_7(aq),~0.01~M~Cr^{3+}~(aq)~and~1.0\times10^{-4}~M~H^+(aq).$

The half cell reaction is

$$\mathrm{Cr_2O_7^{2-}(aq)} + 14\mathrm{H^+(aq)} + 6\mathrm{e^-} {\longrightarrow} 2\mathrm{Cr^{3+}(aq)} + 7\mathrm{H_2O}(\mathit{l})$$

and the standard electrode potential is given as $E^{\circ} = 1.33 \text{ V}$.

[Given: log 10 = 1]

- 32. (A) Answer the following:
 - (a) Low spin tetrahedral complexes are not known.
 - (b) Co^{2+} is easily oxidised to Co^{3+} in the presence of a strong ligand [At. No. of Co = 27]
 - (c) What type of isomerism is shown by the complex $[Co(NH_3)_6]$ $[Cr(CN)_6]$?
 - (d) Why a solution of $[Ni(H_2O)_6]^{2+}$ is green while a solution of $[Ni(CN)_4]^{2-}$ is colourless. (At. No. of Ni = 28)
 - (e) Write the IUPAC name of the following complex : $[Co(NH_3)_5(CO_3)]Cl$

5

- 32. (B) (a) 'कीलेट प्रभाव' से क्या तात्पर्य है ? एक उदाहरण दीजिए ।
- (2+2+1=5)
- (b) $[{\rm Fe(CN)}_6]^{4-}$ का संकरण एवं चुम्बकीय व्यवहार लिखिए । $({\rm V}_6)^{4-} = 26)$
- (c) यदि ${\rm PtC}l_2\cdot 2{\rm NH}_3;$ ${\rm AgNO}_3$ के साथ अभिक्रिया नहीं करता है, तो इसका सूत्र क्या होगा ?
- 33. (A) (a) निम्नलिखित रूपांतरण करें :

(2 + 3 = 5)

- (i) एथेनेल से ब्यूट-2-ईनैल
- (ii) प्रोपेनोइक अम्ल से एथेन
- (b) आण्विक सूत्र C_5H_{10} वाला एक एल्कीन A ओज़ोनी अपघटन पर दो यौगिकों B और C का मिश्रण देता है । यौगिक B धनात्मक फेलिंग परीक्षण देता है और आयोडीन और NaOH विलयन के साथ भी अभिक्रिया करता है । यौगिक C फेलिंग परीक्षण नहीं देता है लेकिन आयोडोफार्म बनाता है । यौगिक A, B और C की पहचान कीजिए ।

अथवा

33. (B) एक कार्बनिक यौगिक (A) (आण्विक सूत्र $C_8H_{16}O_2$) को तनु सल्फ्यूरिक अम्ल के साथ जल अपघटन करके कार्बोक्सिलिक अम्ल (B) और एल्कोहॉल (C) प्राप्त हुआ । (C) का क्रोमिक अम्ल के साथ ऑक्सीकरण करने पर (B) बनता है । निर्जलीकरण पर (C) ब्यूट-1-ईन देता है । (A), (B) और (C) को पहचानिए तथा सम्मिलिति अभिक्रियाओं के लिए रासायनिक समीकरण लिखिए ।

5

- 32. (B) (a) What is meant by 'Chelate effect'? Give an example. (2 + 2 + 1 = 5)
 - (b) Write the hybridization and magnetic behaviour of $[Fe(CN)_6]^{4-}$. (Atomic number : Fe = 26)
 - (c) If $\text{PtC}l_2 \cdot 2\text{NH}_3$ does not react with AgNO_3 , what will be its formula ?
- 33. (A) (a) Carry out the following conversions:

(2+3=5)

- (i) Ethanal to But-2-enal
- (ii) Propanoic acid to ethane
- (b) An alkene A with molecular formula C_5H_{10} on ozonolysis gives a mixture of two compounds B and C. Compound B gives positive Fehling test and also reacts with iodine and NaOH solution. Compound C does not give Fehling solution test but forms iodoform. Identify the compounds A, B and C.

OR

33. (B) An organic compound (A) (molecular formula $C_8H_{16}O_2$) was hydrolysed with dilute sulphuric acid to get a carboxylic acid (B) and an alcohol (C). Oxidation of (C) with chromic acid produced (B). (C) on dehydration gives But-l-ene. Identify (A), (B) and (C) and write chemical equations for the reactions involved.

5

56/1/1

730-1

~ 24 ~

^

Marking Scheme Strictly Confidential

(For Internal and Restricted use only) Senior School Certificate Examination, 2024-25 SUBJECT NAME CHEMISTRY (Theory) -043

(Q.P.CODE 56/1/1)- MM: 70

General Instructions: -

You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.

"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."

Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.

The Marking scheme carries only suggested value points for the answers

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.

Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. **This is most common mistake which evaluators are committing.**

If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.

If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".

No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

A full scale of marks _____(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.

Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on an answer.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying/not same.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)

Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.

Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.

Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.

The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

CHEMISTRY (Theory)- 043

QP CODE 56/1/1 MM: 70

Q. No	Value points	Mark
	SECTION A	
1	(A)	1
2	(B)	1
3	(B)	1
4	(D)	1
5	(B)	1
6	(C)	1
7	(C)	1
8	(A)	1
9	(A)	1
10	(D)	1
11	(C)	1
12	(D)	1
13	(A)	1
14	(B)	1
15	(C)	1
16	(B)	1
	SECTION B	
17	 (A) (a) Due to high pressure inside the pressure cooker, higher is the boiling point and faster is the cooking. (b) Negative deviation Temperature increases. 	1 ½ ½
17	(B)	
_,	Same composition in liquid and in vapour phase and boil at a constant temperature. Maximum Boiling Azeotrope 68% HNO ₃ + 32% H ₂ O (Or any other correct example) (Percentage can be ignored)	1 ½ ½
18	(a) $10I^{-} + 2MnO_{4}^{-} + 16H^{+} \rightarrow 2Mn^{2+} + 8H_{2}O + 5I_{2}$ (b) $Cr_{2}O_{7}^{-2-} + 14 H^{+} + 6 Fe^{2+} \rightarrow 2 Cr^{3+} + 6 Fe^{3+} + 7 H_{2}O$	1
19	• Less reactive,	1
13	 The carbon atom of the carbonyl group of benzaldehyde is less electrophilic than carbon atom of the carbonyl group present in propanal. / The polarity of the carbonyl group is reduced in benzaldehyde due to resonance. 	1
20	(a) $A = CH_3CH_2CN$; $B = CH_3CH_2 CH_2NH_2$ (b) $A = C_6H_5N^+_2Cl^-$; $N = N - NH_2$	½ x 4

21	(a) CHO HC CN	1
	(a) CHO HCN OH	
	(CHOH) ₄ (CHOH) ₄	
	CH ₂ OH CH ₂ OH	
	(b) CHO COOH	
	Br ₂ /H ₂ O	
	$(CHOH)_4 \longrightarrow (CHOH)_4$	
	сн,он сн,он	1
	SECTION C	
22	T _b of glucose solution = 100.20°C	
	$\Delta T_b = T_b - T_b^o$	1/2
	= 100.20 ° – 100 °C = 0.20 °C or 0.20 K	/2
	$\triangle T_b = K_b .m$	4.
	m = 0.20 = 0.390 mol/kg	1/2
	0.512	
	$\Delta T_f = K_f \cdot m$	1/2
	$\Delta T_f = 1.86 \text{ K kg/mol} \times 0.390 \text{ mol/kg}$	/2
	$\Delta T_f = 0.725 \text{ K}$	1
	Freezing point of solution	
	= 273.15 - 0.725	
	$= 272.425 \mathrm{K}$	1/2
	Or -0.725 °C	
23	(a) (i) The limiting molar conductivity of an electrolyte can be represented as the sum of the	1
	individual contributions of the anion and cation of the electrolyte. (ii) The amount of chemical reaction which occurs at any electrode during electrolysis by a	1
	current is proportional to the quantity of electricity passed through the electrolyte.	_
	(b) 'X' is better, as X has more negative electrode potential than Fe / X has more oxidation	1/2 , 1/2
	potential than Fe.	
24	$t_{1/2} = \frac{0.693}{k}$	
	$k_1 = \frac{0.693}{20} = 0.03465 / 3.465 \times 10^{-2} \text{ min}^{-1}$	1/2
	$k_2 = \frac{0.693}{5} = 0.1386 / 1.386 \times 10^{-1} \text{min}^{-1}$	1/2
	5	
	$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$	1/2
	λ ₁ 2.505 [1 ₁ 1 ₂]	
	$\log \frac{0.1386}{0.03465} = \frac{Ea}{2.303 \times 8.314} \frac{[350 - 300]}{[350 \times 300]}$	1/2
	$\log 4 = \frac{Ea}{19.15} \frac{[50]}{[350 \times 300]}$	
	Ea = 24209 J mol ⁻¹ or 24.209 kJ mol ⁻¹ (Deduct ½ mark for no or incorrect unit)	1

25	(a) Its high $\Delta_{ m a} H^{ m o}$ and low $\Delta_{ m hyd} H^{ m o}$	1
	(a) its night and low myd . (b)	
	Cr	1/ 1/
	Cr^{3+} (d ⁴ to d ³) / stable half-filled t _{2g} level	1/2,1/2
	(c) Fully-filled d-orbitals hence no d-d transition / due to the absence of unpaired electron.	1
26.	(A) (a)	
	Br I	
	CH₃	1
	(b)	
	Br	
	CH ₃	
		1
	(c)	
	CI	
	но	
		1
	OR	
26	(B)	
	(a)	
	2 Na	
	2 Ether	1
	-2840	
	(b)	
	$CH_3CH = CH_2 + HBr \xrightarrow{peroxide} CH_3CH_2CH_2Br$	4
	NaI/	1
	CH ₃ CH ₂ CH ₂ I ← Acetone	
	(c)	
	Br I I I I I I I I I I I I I I I I I I I	
	$CH_3 - CH - CH_2 - CH_3 \xrightarrow{Cirabonic KOH}$	1
	$CH_3 - CH - CH_2 - CH_3 \xrightarrow{\text{Ethanolic KOH}} \Delta$ $CH_3 - CH = CH - CH_3 + HBr$	-
	(or any other suitable method of conversion)	<u> </u>
27	(a) $(CH_3)_2NH < CH_3CH_2NH_2 < CH_3CH_2OH$	1
	(b) (i) aromatic halides do not undergo nucleophilic substitution with the anion formed by	1
	phthalimide. (ii)	
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\\\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
	$N \stackrel{\downarrow}{\sim} C - CH_2 \longleftrightarrow N \stackrel{\dagger}{\sim} C - CH_2$	1
	/Due to resonance the lone pair on	
	nitrogen is less available for donation/ Due to +R effect lone pair of electrons is not easily	
	available on N of -NH ₂ group/ Due to -R effect of carbonyl group, electron density on N atom of -	
	NH ₂ group decreases.	

28	(a)		
	Native protein	Denatured protein	
	Three-dimensional structure is intact. Biologically active	Three-dimensional structure is destroyed. Biologically inactive	1
	Biologically delive	(Or any other one correct difference)	
	(b) Lactose	,	
	(c) Vitamin K		1
	SECTIO	ON D	-
29	(a) (i) Slowest step.	ם אכ	1
	(ii) Series of elementary reactions / Reactions	involving two or more steps.	1
	(b) Increases with increase in temperature.		1
	(b) Molecularity is defined only for elementary redetermined hence applicable for both / Because complex reaction may be different and hence me order of a complex reaction is experimentally detained is therefore applicable for both.	actions whereas order is experimentally molecularity of each elementary reaction in aningless for overall complex reaction whereas	1
	(c) 9 times		1
30	$\frac{\text{Br}_2 \text{ in CS}_2}{273 \text{ K}}$ $\stackrel{\text{Br}}{+}$ $\text{Br$	Br Formed.	1
	(ii) OH OH OH O_2N	NO_2	1
	/ 2,4,6-Trinitrophenol / Picric acid is form b)Due to resonance, the lone pair of electrons on		1
	protonation. c)	oxygen is not easily available for	
	Phenol Due to electron releasing effect (+I effect) of met	hyl group/ phenoxide ion formed is less stable	1/2
	in cresol.	.,, 8, 6 4 6, 6 10 10 10 10 10 10 10 10 10 10 10 10 10	1/2
	OR		
	c) 2-Hydroxybenzaldehyde / 2- Hydroxybenzened	arbaldehyde.	1

31	SECTION E	
31	(A) (a) The cell reaction is	
	$Sn(s)+2H^+(aq)\rightarrow Sn^{2+}(aq)+H_2(g)$	1
	$E_{Cell} = (E^o_c - E^o_a) - \frac{0.059}{2} log \frac{[Sn^{2+}]}{[H^+]^2}$	1
	$= [(0) - (-0.14)] - \frac{0.059}{2} \log \frac{0.004}{(0.02)^2}$	
	= 0.14 - 0.0295 log 10	
	= 0.1105 V	1
	b) (i) overpotential of O ₂	1
		1
	(ii) Number of ions carrying current per unit volume decreases on dilution OR	ı
31	B) a) At anode:	
	$Pb+SO_4^{-2} \rightarrow PbSO_4+2e-$	1/2
	At cathode:	
	PbO ₂ + SO ₄ ⁻² +4H ⁺ +2e- \rightarrow PbSO ₄ +2H ₂ O	1/2
	Overall reaction: $Pb+PbO_2+2 SO_4^{-2}+4H^+ \rightarrow 2PbSO_4+2H_2O$	1
	b)	'
	$E_{Cell} = E^{\circ}_{Cell} - \frac{0.059}{n} \log \left[\frac{[\mathit{Cr}^{3+}]^2}{[\mathit{Cr}^207^{2-}][\mathit{H}+]^{14}} \right]$	1
	Ecell = $1.33 - \frac{0.059}{6} \log (10^{-2})^2 / (10^{-2}) (1 \times 10^{-4})^{14}$	
	$= 1.33 - \frac{0.059}{6} (54) \log 10$	
	$= 1.33 - 0.059 \times 9$ $= 1.33 - 0.531$	
	= 0.799 V	1
32	A)a) The orbital splitting energies are not sufficiently large for forcing paring of electrons.	1
	b) In the presence of strong field ligand, d ⁷ is converted into more stable d ⁶	4
	configuration / Strong field effect stabilises higher oxidation state. c) Co-ordination isomerism.	1
	d) $[Ni(H_2O)_6]^{2+}$ has unpaired electrons whereas $[Ni(CN)_4]^{2-}$ has no unpaired electron.	1
	e) Pentaamminecarbonatocobalt(III) chloride	1
32	OR B)(a) The higher stability of complexes involving chelating ligands as compare to	1
54	B)(a) The higher stability of complexes involving chelating ligands as compare to complexes having non-chelating ligand.	'
	Example: [Co(en) ₃] ³⁺ (or any other correct example)	1
	(b) d ² cp ³ diamagnetic	1 ± 1
	(b) d ² sp ³ , diamagnetic (c) [Pt (NH ₃) ₂ Cl ₂]	1+1

33	(A) (a) (i)	
	O OH	1
	$2CH_3 - C - H \xrightarrow{OH^-} CH_3 - CH - CH_2 - CHO \xrightarrow{\Delta} CH_3 - CH - CHO$	
	CH₃CH₂COOH + NaOH + CaO + heat → CH₃-CH₃ (ii)	1
	(b) A = $(CH_3)_2CH=CHCH_3 / 2$ -Methylbut-2-ene	1
	B = CH ₃ CHO / Ethanal	1
	C = CH ₃ COCH ₃ / Acetone/ Propanone	1
	OR	
33	A= C ₃ H ₇ COOC ₄ H ₉ / Butyl butanoate	1
	B= C ₃ H ₇ COOH / Butanoic acid	1/2
	C= C ₄ H ₉ OH / Butan-1-ol	1/2
	$C_3H_7COOC_4H_9+ dil.H_2SO_4 \rightarrow C_3H_7COOH + C_4H_9OH$	1
	$C_4H_9OH + Conc.$ Sulphuric acid + Heat $\rightarrow CH_3CH_2CH=CH_2$	1
	$C_4H_9OH \xrightarrow{CrO_3 / CH_3COOH} C_3H_7COOH$	1

अंकान योजना

MARKING SCHEME 2024-25

रसायनावनाव (मेंद्र)तिक GHEMISTRY (Theory)- 043 QP CODE 56/1/1

MM: 70

Q. No	Har lake	25
Q. NO	खंड 'क'	5290
		1
2	(A) (B)	1
	(B)	1
4		1
5	(D) (B)	1
6	(C)	1
7	(C)	1
8	(A)	1
9	(A)	1
10	(D)	1
11	(C) '	1
12	(D)	1
13	(A)	1
14	(B)	1
15	(C)	1
16	(B)	1
-10	खंड 'ख'	
17		
17	(A) (अ प्रेश्न कुकार के अंदर उच्च दाब के कारण, उच्चतर क्वधनां के के कारण भोजन का पकारण रेजी में होता है। (b) • महणात्मक विचलन • ताप में वृद्धि अध्वा (B) . द्रव व वांच्य प्रांवस्था में संव्यास मामाम होता है तथा मह रका स्पिन ताम पर उठलते हैं। • अविकतम क्वथनां की स्थिरक्वा थी • 68% HNO3 + 32% H20 (अध्वा को सकती है) (प्रांतशत की ख्रोक्स क्वा का सकती है)	1 12 12 12
ŢŢ,	VII.	

	·	
18	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ $	1
10	(a) $Cr_2O_7^{2-} + 14 H^+ + 6 Fe^{2+} \rightarrow 2 Cr^{3+} + 6 Fe^{3+} + 7 H_2O$	1
19	• कत्र अभिनियाशील	1
	9 9	1 /
	परमाण प्रापनेल के कार्बानल समूह की। कुलाना में कम इलक्ट्रानरामी होता है। बन्ने कि हाइड में अनुमाद के कारण कार्बानल समूह की। धुवता कम हो जाती है	
	वाला में क्रम इलक्ट्रानराभी होता है।	
	विनो रिडाइड में अनुसद के कारण	1
	कार्बातल समूह की अवता कम हो जाती है	
	·	
20	(a) $A = CH_3CH_2CN$; $B = CH_3CH_2 CH_2NH_2$	1/2 x 4
	(b) $A = C_6H_5N^{+}_2Cl^{-}$;	
	NH ₂	,
21	B = CN HC CN	1
	HCN OH (CHOH) ₄ (CHOH) ₄	
	CH ₂ OH CH ₂ OH	
	(b) CHO COOH	
	(b) CHO $\downarrow \qquad \qquad$	
		1
	CH ₂ OH CH ₂ OH खंड ' ग'	
22	T _b of glucose solution = 100.20°C	
	$\Delta T_b = T_b - T_{ob}^b$ = 100.20 ° - 100 °C = 0.20 °C or 0.20 K	1/2
	$\Delta T_b = K_b .m$	1/2
L		

	m = 0.20 = 0.390 mol/kg 0.512	
	$\Delta T_f = K_f \cdot m$	1/
	$\Delta T_i = 1.86 \text{ K kg/mol} \times 0.390 \text{ mol/kg}$	1/2
	$\Delta T_f = 0.725 \text{ K}$	1
	विलायन का हि माक	-
	= 273.15 - 0.725	
	= 272.425 K	1/2
	Or -0.725 °C	
23	(a) (i) किसी वैध्वअपंष्य की सीमात मोलर	
	चालकता के उसके धनाया यव महणायन	
	2 2	
	के अलग - अलग योगदान के योग के	1
	वराबर निकापत किया जा सकता है।	
	(ii) विद्युत धारा द्वारा वेद्युत अप बाटन में	
	7 -1311 9 -1311(1) 21	
	रासामितिक विद्यारत की नाम वैद्युतक्षपूष्ट्य	
	के प्रवाहित विद्यात धारा की जाता के	
	के प्रवाहित विद्यात व्यारा की जाता के समानुपाती हाती है।	
	b x बहतर है, क्यों कि Fe की जुला में	12 12
	X 9 60 7 6 - 12 1/	.
	X का अधिक म्हणात्मक इलेक्ट्रोड विमव है।	1 1
	Fe की दुलग में X का ऑक्सीकरण	2
	re an god of x and 3114211970	
	And study Etai &	
24	$t_{1/2} = \frac{0.693}{\nu}$	
	K .	
	$k_1 = \frac{0.693}{20} = 0.03465 / 3.465 \times 10^{-2} \text{ min}^{-1}$	1/2 1/2
	$k_2 = \frac{0.693}{5} = 0.1386 / 1.386 \times 10^{-1} \text{min}^{-1}$	/2
	$\begin{bmatrix} k_2 & E_a & T_2 - T_1 \end{bmatrix}$	1/2
	$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$	"
	0.1386	1/2
	$Log \frac{0.1386}{0.03465} = \frac{Ea}{2.303 \times 8.314} \frac{[350 - 300]}{[350 \times 300]}$	/*
	$Log 4 = \frac{Ea}{19.15} \frac{[50]}{[350 \times 300]}$	
		1

	Ea = 24209 J mol ⁻¹ or 24.209 kJ mol ⁻¹	
	(यदि इवाई जालत अपना नहीं ही	
25	(a) \$41 4) 3 24 Da H 3/12 1729 DAYAH	1
	(b) a Cx	12
	· C23+ (d4 दे व3) / स्थायी अधिषात	12
•	t 29 FOR	
	(C) पूर्ण-अरित व-कश्नक, इसालिए कोई व-व संक्रमण नहीं 1/ अयुगालत इलेक्ट्रॉन	
	की अनु पास्प्रित के कावण	
26.	(A) (a)	
20.	Br CH ₃	1
	(b)	
	CH ₃	1
	(c)	
	но	1
26	(B) (a)	
	2 CI Ether - 2Naci	1
	(Thlorobenzene Diphenyl (b)	
		1

| Page

CH ₃ CH = CH ₂ + HBr	
(c)	
(c) Hr	
THI	
2-व्रोमोक्यूटेन CH3-CH=CH-CH3 · HBr क्यूट-2-ईन (क्रोई अन्य अपग्रस्त रूपान्तरणकी विद्या) 27 (a) (CH3)2NH < CH3CH2NH2 < CH3CH2OH (b) (i) वर्ग कि ये रिल हे लाई 3 ये लिलाइड से प्राप्त प्रिणायन के साथ नालिकरागी प्रातस्थापन	
2-व्रोमोक्यूटेन CH3-CH=CH-CH3 · HBr क्यूट-2-ईन (क्रोई अन्य अपग्रस्त रूपान्तरणकी विद्या) 27 (a) (CH3)2NH < CH3CH2NH2 < CH3CH2OH (b) (i) वर्ग कि ये रिल हे लाई 3 ये लिलाइड से प्राप्त प्रिणायन के साथ नालिकरागी प्रातस्थापन	
(a) (CH3)2NH < CH3CH2NH2 < CH3CH2OH (b) (i) क्यां कि ये रिल हे लाइ उ थे लिलाइ ये प्राप्त रिए। ये के साथ नालिकराजी प्रात्स्थापन	
(b)(i) क्यों कि के रिल है लाइ 3 धें लिलाइड की प्राप्त रिक्रामिन के साथ नालिकराभी प्रात्तिस्थापन	
त्रिणायन के साथ नामकनामी प्रातस्थापन	
त्रिणायन के साथ नामकनामी प्रातस्थापन	
अभिक्रिया नहीं कार्र संबात ।	
(ii)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
अनुनाद के कारण नाइह्राजन पर असहभामित	
इलक्रांग युगल दान के लिए काम अपलब्य	
8121 & 1/ +R 4N19 of 0112019 -NH2 H DE	
के पा असह भारतित इ लेक्ट्रांग खेला आसामी	
2 - R 4710	
होता है। / + R प्रमांव के कारण 9 - NH2 में प्रेट के N पर असहभाजित इसे करों 1 खुका आसामी से उपलब्ध नहीं होता / कार्बा निल समूट के - R प्रमांव के अगरण - NH2 समूह के N - परमाण पर इसेक्ट्रॉन व्यवस्व कम हो जाता है	-/
28 (a)	`
प्राकृत प्रोटीन विकृतीकृत प्रोटीन	
नि-आयामी संस्था। नि-आयामी संस्था। नहा बरकारार है। हो जाती है।	
बरकारार है। हो जाती है।	
नीविक कप से साक्रिय। जैविक कप से निक्किय।	
1 1 6 7 7 90 9 6 7 196 4 1 9 199 47 1 1 1 1 1	
(भोई अन्य मही अंतर)	
(भोई अन्य मही अंतर)	
(भोई अन्य मही अंतर)	
(भोई अन्य मही अंतर)	

	ਕੁੰ ਫ 'ਬ'	
29		1
	(a) सबसे अद पद	
	(i) प्राथितिक अगि किया की शेखला वि या आणिक	
	पदां वाली अभि क्रिया	
		1
	(b) ताप में वृद्धि के साथ बद जाता है।	-'
	3194	
	(b) आणिकता केवल प्राथमिक अमिकिया के लिए ही	
	परिभाषित होती है जलका आणिक्या की कोरि एक	
	प्रामोगिक भाता है अतः दोतें पर लग्न होतेहैं	
	क्यों कि जीटल अभिक्रियां के लिए प्रत्येक प्राप्तिक)
	अभिनिया की आण्विकता भिन्त होती है अतः हारिल	17
	अभिनिया की आणिकता भिन्न होती है अत! लारिल अभिनिया के लिए उनाण्विकता का भोई अर्थ नहीं	
	होता लबकि जिटल छामित्रिया के लिए को टि कियावि।	
	की सबसे जेंद पद की द्वारी है अतः होने। पर अग्य होती है।	- 4
	(c) 710[1].	1
30	(a)	,
	(i)	
	он он	
	Br ₂ in CS ₂ + +	_
	12-01 XI (1) (1) (1) (3) (2)	
	(ii) OH अपनिया अने से रि	
	OH O	
	Conc. HNO ₃	,
	NO2 / 2, 4, 6 - ट्राइनाइट्रो फीर्नाल)	1
	141940H	†
610	व्यक्ता है।	

े अनुनाइ के कारण, ऑक्सीजन प्र असहमानित इसकर्म मुगल पोटोनम के लिए आसानी से उपलब्ध नहीं है! (c) • फ़ीनॉल • माचल नम्ह के इलक्टॉन विज्ञीचन प्रमान (+ I प्रमान) के कारण / क्रीसाल के मिनित फ़ी नॉक्सा इड अगमन काम स्थामी होता है। स्थन (c) २- होइड्राक्सीकेन्द्रील्ड हाइड्/२-हाइड्राक्सीकेनीनुका खंड डं (A)(a) सेल आंग्रिया है Sn(s)+2H*(aq)→Sn²+(aq)+H₂(g)	1 1/2 1/2 1	155
$\begin{aligned} E_{Cell} &= (E^o{}_c - E^o{}_a) - \frac{0.059}{2} \log \frac{[Sn^{2+}]}{[H^+].^2} \\ &= [(0) - (-0 \cdot 14)] - \frac{0.059}{2} \log \frac{0.004}{(0.02).^2} \\ &= 0.14 - 0.0295 \log 10 \\ &= 0.1105 V \end{aligned}$	1	
b)(i) 02 के अंग्रियाचि भव के कारण		

(ii) तिक्रमण करने पर प्रति ईकाई आयतन में विद्युत्यार के करने हो			
B a) シーラ マート ファート エー ファート		(ii) तनुकरण करने पर प्रति इकाई आयतन में विद्युत्यारा से जाने वाले आयनें की संस्कार ब्यट जाने हैं।	1
B a) シーラ マート ファート エー ファート			
B a) シーラ マート ファート エー ファート			
मियांड पर PbO2+504 ² +4H ⁴ +2e—PbSO4+2H ₂ O मियां अपि किया Pb+PbO2+2 SO4 ² +4H ⁴ : →2PbSO4+2H ₂ O b) प्रित्र: Ecoll = 1.33 - 0.059 log [cr3 ²] ² /(10 ²)(1 X10 ⁴) ¹⁴ = 1.33 - 0.059 x9 = 1.33 - 0.059 x9 = 1.33 - 0.059 x9 = 1.33 - 0.059 x9 = 1.33 - 0.0531 = 0.799 V 32 (A) (a) क्रिश्तों की विषादि अर्जी इतने अप्लिक अप्रिंग की की विषादि अर्जी इतने अप्रिंग के अभ्या के लिए अप्रिंग की की विषादि अर्जी की लिए अप्रिंग की की कियादि अर्जी की लिए अप्रिंग की क्यापित की प्रिंग की की की कियादि की की लिए अप्रिंग की कियादि की अर्जी की लिए अर्जी की की कियादि की अर्जी की लिए अर्जी की की कियादि की अर्जी की		্ৰ স্থান	
### PhPhO2+2 SO4 ²⁺ 4H ¹ : →2PbSO4+2H ₂ O b) (大方: Ecoll = E ⁰ Coll = ^{0.059} log [Cr ³⁺]2 [Cr ²⁰⁷²⁻][H+] ¹⁴ Ecoll = 1.33 - ^{0.059} cog (10 ²)2 /(10 ²)(1 X10 ⁴) ¹⁴ = 1.33 - ^{0.059} (54) log 10 = 1.33 - 0.059 x 9 = 1.33 - 0.059 x 9 = 1.33 - 0.531 = 0.799 V 32 (A) (a) あえれか め िवपार (まる まる まではず (も) は は かえ し は まる まえ (こ) まま (こ) な (こ) は (こ	31	B) a) .22 -11 ⊆	1/2
b) स्ता: Ecell = E ^o cell - 0.059 log [[cr2072-][H+]14] Ecell = 1.33 - 0.059 / 6 log (10 ²) ² /(10 ²)(1 × 10 ⁴) ¹⁴ = 1.33 - 0.059 / 6 log 10 = 1.33 - 0.059 × 9 = 1.33 - 0.531 = 0.799 V 32 (A) (a) क्रिसका की विचार क्रिकी इतकी अधिक क्रिकों की क्रिकों की प्रकार के लिए क्रिकी की क्रिकों की प्रकार की उपास्थात में प्रकार के लिए क्रिकों की प्रकार की उपास्थात में प्रकार की अधिक स्थापी विकास की प्रकार में परिवर्तित हैं। जीता है । (b) प्रवल सेंग लिग्ड की उपास्थात में परिवर्तित हैं। जीता है । (b) प्रवल सेंग प्रभाव उच्चत्र औं क्रिकी हैं। जीता है । प्रवल सेंग प्रभाव उच्चत्र औं क्रिकी हैं। जीता है । प्रवल सेंग प्रभाव उच्चत्र औं क्रिकी हैं। (c) उपसहसंगा की स्थापित प्रवान केन्त्र हैं। (d) [N:(H20)6] ²⁺ में अयुगलित इलेक्ट्रॉन हैं। जिल्ली [N:(CN)] ²⁻ में कोई अयुगलित इलेक्ट्रॉन हैं।		$PbO_2 + SO_4^{-2} + 4H^{+} + 2e^{-} \rightarrow PbSO_4 + 2H_2O$	1/
b) स्ता: Ecell = E ^o cell - 0.059 log [[cr2072-][H+]14] Ecell = 1.33 - 0.059 / 6 log (10 ²) ² /(10 ²)(1 × 10 ⁴) ¹⁴ = 1.33 - 0.059 / 6 log 10 = 1.33 - 0.059 × 9 = 1.33 - 0.531 = 0.799 V 32 (A) (a) क्रिसका की विचार क्रिकी इतकी अधिक क्रिकों की क्रिकों की प्रकार के लिए क्रिकी की क्रिकों की प्रकार की उपास्थात में प्रकार के लिए क्रिकों की प्रकार की उपास्थात में प्रकार की अधिक स्थापी विकास की प्रकार में परिवर्तित हैं। जीता है । (b) प्रवल सेंग लिग्ड की उपास्थात में परिवर्तित हैं। जीता है । (b) प्रवल सेंग प्रभाव उच्चत्र औं क्रिकी हैं। जीता है । प्रवल सेंग प्रभाव उच्चत्र औं क्रिकी हैं। जीता है । प्रवल सेंग प्रभाव उच्चत्र औं क्रिकी हैं। (c) उपसहसंगा की स्थापित प्रवान केन्त्र हैं। (d) [N:(H20)6] ²⁺ में अयुगलित इलेक्ट्रॉन हैं। जिल्ली [N:(CN)] ²⁻ में कोई अयुगलित इलेक्ट्रॉन हैं।		ユーソーノ	1
Ecell = 1.33 - \frac{0.059}{6} \log \left[\frac{(cr\frac{1}{2})^2}{(cr\frac{1}{2}\color{1}{2})\color{1}{2}\color{1}{2}\color{1}\color{1}{2}\color{1}{2}\color{1}{2}\color{1}		b)	
Ecell = 1.33 - 0.059 log (10 ²) ² /(10 ²)(1 X10 ⁴) ¹⁴ = 1.33 - 0.059 x 9 = 1.33 - 0.059 x 9 = 1.33 - 0.531 = 0.799 V 32 (A) (a) किंद्राकों की विपादन कर्जी इतन अग्लिक किंद्राकों की विपादन कर्जी इतन अग्लिक के लिए क्रिका किंद्राकों की प्रकार के लिए क्रिका के स्थापित के प्रकार के लिए क्रिका के स्थापित के प्रकार के प्रवादित हैं जीताई / प्रवाद के प्रवाद के स्थापित के प्रवाद के प्रवाद के स्थापित के स्था		$F_{Coll} = F^{\circ}_{Coll} - \frac{0.059}{100} log \left[\frac{[cr3^+]2}{cr3^+} \right]$	
= 1.33 - 0.059 (54) log 10 = 1.33 - 0.059 x 9 = 1.33 - 0.059 x 9 = 1.33 - 0.531 = 0.799 V 32 (A) (a) क्रिश्न को किया य क्रिजी इतकी अध्यक्त कि की की किया य कि किया के किया कि किया के किया कि किया के किया किया के किया के किया के किया किया किया के किया के किया किया किया किया किया किया किया किया		$\frac{1}{1000} = \frac{1}{1000} = 1$	1 1
=1.33-0.059×9 =1.33-0.531 =0.799∨ 32 (A) (a) क्रिश्तकों की विपादन क्राजी इतनी अण्यक किराने की विपादन क्राजी इतनी अण्यक किराने की विपादन क्राजी इतनी अण्यक कार्य के विराग कार्य के विपादन के प्राचीत के विपादन के प्राचीत के विपादन के प्राचीत के विपादन के प्राचीक रणा प्रवास की प्राचीक उपतार क्राजीक रणा अवस्था की स्थापित प्रवास के स्थापित हो स्थापित इत्से स्थापित स्		1	
= 1.33-0.531 = 0.799 V A) (a) क्रिंति की विपादन अर्जी इतनी अंग्रिक की की की की की की अंग्रिक की किए की किए की की की की की की अंग्रिक की किए की			
32 (A) (a) क्रम्सनों की विचारन अर्जी इतनी अधिक नहीं हो ती जी इलेक्ट्रोंनों की युग्मन के लिए बावम करें। (b) प्रवल सेत्र लिगन्ड की उपास्थानि में, वे ^म अधिक स्थापी वे विन्यास में परिवर्तित हो जीताई। प्रवल सेन प्रभाव उत्पत्र ऑक्ट्रीकरण अवस्था की स्थापित प्रवान केन्सा है। (c) उपसहसंघोलन स्मावयवता व) [Ni(H2O)6] में में अयुगलित इलेक्ट्रॉन हैं लाकिक [Ni(cN)] ने में अयुगलित इलेक्ट्रॉन । नहीं है)		= 1.33 – 0.531	1
नहीं हो ती जी इलेक्ट्रांनां की युग्मन के लिए कार्य करें! हों प्रवल सेत्र लिगन्ड की उपस्थाति हों जी ती हैं। अध्यक स्थायी वर्ष विन्यास हों परिवर्तित हों जी ती हैं। प्रवल सेत्र प्रभाव उत्पत्र ऑक्सीकारण अवस्था की स्थायित प्रवान कारता है। (c) उपसहसंघात्मन स्भावयवता की [Ni(H2O)6] के अयुगलित इलेक्ट्रांन हैं। जिनकी [Ni(CN)] को की अयुगलित इलेक्ट्रांन । नहीं है।	32		
कार्म करें। कार्म करें। कार्म करें। अध्यक्त सेन लिगन्ड की उपास्मात में, वे ने अध्यक्त सेन प्रमाव उत्पत् में परिवर्तित हैं। जाता है। प्रमाय की स्पामित प्रधान केरता है। (c) उपसहसंस्रोदन समावयवता व) [Ni(H20)6] में में अयुगलित इलेक्ट्रॉन हैं लामकि [Ni(cN)] में में अयुगलित इलेक्ट्रॉन । नहीं है)			
(b) पुबल सेत्र लिगन्ड की उपस्थित में, वेर्न अधिक स्थापी वे विन्यास में परिवर्तित हैं। जाता है। प्रवल सेत्र प्रभाव उत्पत्र ऑक्सीकरण अवस्था की स्थापित प्रधान केरता है। (c) उपसहसंगोत्तन स्मावयवता d) [Ni(H20)6] में भे अयुगलित इलेक्ट्रॉन हैं। जिनकी [Ni (cN)] ने में भोई अयुगलित इलेक्ट्रॉन १हीं है)		नहीं है। है। इसक्सारा की युवनन के 1002	
अधिक रूपायी व विन्यास में परिवर्तित हैं जिताता है। प्रमाल उत्पत्र आंक्सीकरण अवस्था की स्थायित प्रवान केन्स्ता है। (c) उपसहसंग्रीसन स्मावयनता d) [Ni(H2O)6] में में अग्रुगलित इलेक्ट्रॉन हैं जिन्नी [Ni (cN)] ने में अग्रुगलित इलेक्ट्रॉन हैं। नहीं है)		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
प्रवल में न प्रभाव उत्पत् ऑक्सीकरण अवस्था की स्थापित प्रवान कारता है। (c) उपसहसंगोतन समावयवता d) [Ni(H20)6] में भें अयुगलित इलेक्ट्रॉन हैं लाककि [Ni(cN)] में भोई अयुगलित इलेक्ट्रॉन १ हीं है)		(b) प्रबल संत्र लिंगन्ड की उपास्थात में , d	. 1
प्रवल में न प्रभाव उत्पत् ऑक्सीकरण अवस्था की स्थापित प्रवान कारता है। (c) उपसहसंगोतन समावयवता d) [Ni(H20)6] में भें अयुगलित इलेक्ट्रॉन हैं लाककि [Ni(cN)] में भोई अयुगलित इलेक्ट्रॉन १ हीं है)		अधिक रूपायी विन्यास के परिवर्तित हा जाता है	
(c) उपसहसं प्रांतन समावयवता d) [Ni(H2O)6] ²⁺ में अयुगलित इलेक्ट्रॉन हैं अबिक [Ni(cN)] ²⁻ में भोई अयुगलित इलेक्ट्रॉन 1 हीं है)		your Rin 4nia 3 was misulaneul	
d) [Ni(H2O)6] 2+ में अयुगलित इलेक्ट्रॉन हैं अक्रिक [Ni(cN)] 2- में मोई अयुगलित इलेक्ट्रॉन 1 -18/ डे)		31वस्था की स्पापित प्रवान करता है।	
अब्बि [Nr. (cN)] के भोई अयुगलित इलेक्ट्रांग 1			1
अब्बि [Nr. (cN)] के भोई अयुगलित इलेक्ट्रांग 1		d) [Ni(H2O)6] 2+ हें अयुगलित इलेक्ट्रॉन हैं	
-18 3)		GIBIA [Ni (CN)] 2- में भोई अयुगलित इलेक्ट्रा	71
(e) पे-टारेम्मी कार्वो ने टो को बाल्ट (11) क्लोबाइड 1		一個 量	
		(e) पे-टारेम्मी कार्वान रोको बालर (111) क्लोराइड	1

	. अथवा	
32	(B) (a) विना कीलेट लिगन्ड युक्त संकुली की जुलग में कीलेट लिगन्ड युक्त संकुल अधिक स्पामी होते हैं!	1
	ਤੋਫ਼ 1 है-ਪ। ;: [Co(en)₃]³+ (b) d²sp³, प्राति - दुइन्जिकी य (c) [Pt (NH₃)₂ Cl₂]	1 1+/ 1
33	(A) (a) (i) O OH $2CH_3 - C - H \xrightarrow{OH^-} CH_3 - CH_2 - CHO \xrightarrow{\Delta} CH_3 - CH = CH - CHO$	1
	$2CH_3$ - \ddot{C} - H \longrightarrow CH_3 - CH - CH_2 - CH_3 -	1
	(b) A = (CH ₃) ₂ CH=CHCH ₃ (२ × भे छिल छाउ - २ ~ ईन B = CH ₃ CHO / २ थे नेल C = CH ₃ COCH ₃ / २ सी येन / प्रापनोन अथवा	1 1 1
22		1
33	A= C ₃ H ₇ COOC ₄ H ₉ / ex 12 m ex 2	1/2
	C ₃ H ₇ COOC ₄ H ₉ +√J H ₂ SO ₄ → C ₃ H ₇ COOH + C ₄ H ₉ OH C ₄ H ₉ OH + + HIS ~ (100 H) (2012) + 130 H CH ₃ CH ₂ CH=CH ₂	1
	C ₄ H ₉ OH Cro3 / CH3COOH C ₃ H ₇ COOH	1