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Candidates must write the Q.P. Code 

on the title page of the answer-book. 

 Series PQ2RS/2  Set – 3  

  àíZ-nÌ H$moS>       

 Q.P. Code  

AZwH«$_m§ §H$ 

Roll No. 
 
 
 
 
 

 
 
 

 

 
 
 

 
 
 
 
 
 
 

 J{UV  
MATHEMATICS 

 

{ZYm©[aV g_` : 3 KÊQ>o   A{YH$V_ A§H$ : 80 

Time allowed : 3 hours  Maximum Marks : 80 

· H¥$n`m Om±M H$a b| {H$ Bg àíZ-nÌ _o§ _w{ÐV n¥ð> 23 h¢ & 
· H¥$n`m Om±M H$a b| {H$ Bg àíZ-nÌ _| >38 àíZ h¢ & 
· àíZ-nÌ _| Xm{hZo hmW H$s Amoa {XE JE àíZ-nÌ H$moS> H$mo narjmWu CÎma-nwpñVH$m Ho$  

_wI-n¥ð> na {bI| & 
· H¥$n`m àíZ H$m CÎma {bIZm ewê$ H$aZo go nhbo, CÎma-nwpñVH$m _| àíZ H$m H«$_m§H$ 

Adí` {bI| & 
· Bg  àíZ-nÌ  H$mo n‹T>Zo Ho$ {bE 15 {_ZQ >H$m g_` {X`m J`m h¡ &  àíZ-nÌ H$m {dVaU 

nydm©• _| 10.15 ~Oo {H$`m OmEJm &  10.15 ~Oo go 10.30 ~Oo VH$ N>mÌ Ho$db àíZ-nÌ 
H$mo n‹T>|Jo Am¡a Bg Ad{Y Ho$ Xm¡amZ do CÎma-nwpñVH$m na H$moB© CÎma Zht {bI|Jo & 

· Please check that this question paper contains 23 printed pages. 

· Please check that this question paper contains 38 questions. 

· Q.P. Code given on the right hand side of the question paper should be 

written on the title page of the answer-book by the candidate. 

· Please write down the serial number of the question in the answer-book 

before attempting it. 

· 15 minute time has been allotted to read this question paper. The question 
 paper  will  be  distributed  at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., 
the students will read the question paper only and will not write any 
answer on the answer-book during this period. 

65/2/3 *PQ2RS/2* 
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gm_mÝ` {ZX}e : 

{ZåZ{b{IV {ZX}em| H$mo ~hþV gmdYmZr go n{‹T>E Am¡a CZH$m g™Vr go nmbZ H$s{OE : 

(i) Bg àíZ-nÌ _| 38 àíZ h¢ & g^r àíZ A{Zdm`© h¢ & 

(ii) `h àíZ-nÌ nm±M IÊS>m| _| {d^m{OV h¡ – H$, I, J, K Ed§ L> & 

(iii) IÊS> H$ _| àíZ g§»`m 1 go 18 VH$ ~hþ{dH$ënr` VWm àíZ g§»`m 19 Ed§ 20 A{^H$WZ 

Ed§ VH©$ AmYm[aV 1 A§H$ Ho$ àíZ h¢ & 

(iv) IÊS> I _| àíZ g§»`m 21 go 25 VH$ A{V bKw-CÎmar` (VSA) àH$ma Ho$ 2 A§H$m| Ho$ àíZ h¢ &  

(v) IÊS> J _| àíZ g§»`m 26 go 31 VH$ bKw-CÎmar` (SA) àH$ma Ho$ 3 A§H$m| Ho$ àíZ h¢ &  

(vi) IÊS> K _| àíZ g§»`m 32 go 35 VH$ XrK©-CÎmar` (LA) àH$ma Ho$ 5 A§H$m| Ho$ àíZ h¢ &   

(vii) IÊS> L> _| àíZ g§»`m 36 go 38 àH$aU AÜ``Z AmYm[aV 4 A§H$m| Ho$ àíZ h¢ &  

(viii) àíZ-nÌ _| g_J« {dH$ën Zht {X`m J`m h¡ & `Ú{n, IÊS> I Ho$ 2 àíZm| _|, IÊS> J Ho$ 3 àíZm| 

_|, IÊS> K Ho$ 2 àíZm| _| VWm IÊS> L> Ho$ 2 àíZm| _| Am§V[aH$ {dH$ën H$m àmdYmZ {X`m J`m  

h¡ &  

(ix) H¡$ëHw$boQ>a H$m Cn`moJ d{O©V h¡ & 

IÊS> H$ 

Bg IÊS> _| ~hþ{dH$ënr` àíZ h¢, {OZ_| àË`oH$ àíZ 1 A§H$ H$m h¡ & 

1. `{X y = cos–1 (ex) h¡, Vmo 
dx

dy  h¡ : 

(A) 
1e

1

x2– +
 (B) – 

1e

1

x2– +
 

(C) 
1–e

1

x2–
 (D) – 

1–e

1

x2–
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General Instructions : 

Read the following instructions very carefully and strictly follow them : 

(i) This question paper contains 38 questions. All questions are compulsory.  

(ii) This question paper is divided into five Sections – A, B, C, D and E.  

(iii) In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and 
questions number 19 and 20 are Assertion-Reason based questions of 1 mark 
each.  

(iv) In Section B, Questions no. 21 to 25 are very short answer (VSA) type 
questions, carrying 2 marks each.  

(v) In Section C, Questions no. 26 to 31 are short answer (SA) type questions, 
carrying 3 marks each. 

(vi) In Section D, Questions no. 32 to 35 are long answer (LA) type questions 
carrying 5 marks each.  

(vii) In Section E, Questions no. 36 to 38 are case study based questions carrying  
4 marks each.   

(viii) There is no overall choice. However, an internal choice has been provided in  
2 questions in Section B, 3 questions in Section C, 2 questions in Section D and 
2 questions in Section E.  

(ix) Use of calculators is not allowed.  
 

SECTION A 

This section comprises multiple choice questions (MCQs) of 1 mark each. 

1. If y = cos–1 (ex), then 
dx

dy
 is :  

(A) 
1e

1

x2– +
 (B) – 

1e

1

x2– +
 

(C) 
1–e

1

x2–
 (D) – 

1–e

1

x2–
  



666 

65/2/3-12 Page 4 of 23 

2. AdH$b g_rH$aU y²2 + log (y¢) = x5 H$s KmV Am¡a H$mo{Q> H«$_e: h¢ :  

(A) n[a^m{fV Zht, 5 (B) n[a^m{fV Zht, 2 

(C) 5, n[a^m{fV Zht, (D) 2, 2  

3. _mÌH$ g{Xe, Omo {H$ g{Xem| ^
i  + ^

k  Am¡a ^
i  – ^

k , XmoZm| na b§~ h¡, h¡ :  

(A) 2
^
j  (B) 

^
j  

(C) 
^^

2

k–i
 (D) 

^^

2

ki +
 

4. aoIm 
2

1–x  = – y = 
6

1z2 +  Ho$ g_m§Va EH$ g{Xe Ho$ {XH$²-AZwnmV h¢ : 

(A) 2, – 1, 6 (B) 2, 1, 6 

(C) 2, 1, 3 (D) 2, – 1, 3 

 

5. `{X Amì`yh ú
û

ù
ê
ë

é
=

xtan1–

1xtan
A  Ho$ {bE A + A¢ = 2 3 I h¡, Vmo x Î úû

ù
êë

é p

2
,0  H$m 

_mZ h¡ :  

(A) 0 (B) 
4

p
 

(C) 
3

p
 (D) 

6

p
 

6. `{X EH$ aoIm x-Aj H$s YZmË_H$ {Xem Ho$ gmW 30° H$m H$moU, y-Aj H$s YZmË_H$ {Xem 

Ho$ gmW 120° H$m H$moU ~ZmVr h¡, Vmo `h aoIm z-Aj H$s YZmË_H$ {Xem Ho$ gmW Omo H$moU 

~ZmVr h¡, dh h¡ :  

(A) 90° (B) 120° 

(C) 60° (D) 0° 
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2. The degree and order of differential equation y²
2
 + log (y¢) = x5 respectively 

are :  

(A) not defined, 5 (B) not defined, 2 

(C) 5, not defined  (D) 2, 2  

3. The unit vector perpendicular to both vectors 
^
i  + 

^
k  and 

^
i  – 

^
k  is : 

(A) 2
^
j  (B) 

^
j  

(C) 
^^

2

k–i
 (D) 

^^

2

ki +
 

4. Direction ratios of a vector parallel to line 
2

1–x
 = – y = 

6

1z2 +
 are :  

(A) 2, – 1, 6 (B) 2, 1, 6 

(C) 2, 1, 3 (D) 2, – 1, 3 

 

5. If for the matrix ú
û

ù
ê
ë

é
=

xtan1–

1xtan
A , A + A¢ = 2 3 I, then the value of       

x Î úû

ù
êë

é p

2
,0  is :  

(A) 0 (B) 
4

p
 

(C) 
3

p
 (D) 

6

p
 

6. If a line makes an angle of 30° with the positive direction of x-axis, 120° 

with the positive direction of y-axis, then the angle which it makes with 

the positive direction of z-axis is :  

(A) 90° (B) 120° 

(C) 60° (D) 0° 
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7. `{X EH$ 3 ´ 3 Ho$ A{Xe Amì`yh Ho$ g^r Ad`dm| H$m `moJ\$b 9 h¡, Vmo BgHo$ g^r 

Ad`dm| H$m JwUZ\$b hmoJm :  

(A) 0 (B) 9 

(C) 27 (D) 729 

8. _mZm f : R+ ® [– 5, ¥), f(x) = 9x2 + 6x – 5 Ûmam n[a^m{fV h¡, Ohm± R+ g^r G$UoVa 
dmñV{dH$ g§»`mAm| H$m g_wƒ` h¡ & Vmo f  h¡ :  

(A) EH¡$H$s   

(B) AmÀN>mXH$  

(C) EH¡$H$s AmÀN>mXH$   

(D) Z Vmo EH¡$H$s Am¡a Z hr AmÀN>mXH$  

9. `{X 
c–b  a  

c   b–a  

c   b   a–

 = kabc  h¡, Vmo k H$m _mZ h¡ :  

(A) 0 (B) 1 

(C) 2 (D) 4 

10. f(x) = 

x 3, x – 3

– 2x, – 3 x 3

6x 2, x 3

ì + £
ï
ï

< <í
ï

+ ³ïî

`{X

`{X

`{X

   

 Ûmam n[a^m{fV \$bZ Ho$ Agm§VË`Vm Ho$ q~XþAm| H$s g§»`m h¡ :  

(A) 0 (B) 1 

(C) 2 (D) AZÝV$ 
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7. If the sum of all the elements of a 3 ´ 3 scalar matrix is 9, then the 

product of all its elements is :  

(A) 0 (B) 9 

(C) 27 (D) 729 

8. Let f : R+ ® [– 5, ¥) be defined as f(x) = 9x2 + 6x – 5, where R+ is the set 

of all non-negative real numbers. Then, f is :  

(A) one-one   

(B) onto  

(C) bijective   

(D) neither one-one nor onto  

9. If 

c–b  a  

c   b–a  

c   b   a–

 = kabc, then the value of k is :  

(A) 0 (B) 1 

(C) 2 (D) 4 

10. The number of points of discontinuity of f(x) = 

x 3, if x – 3

– 2x, if – 3 x 3

6x 2, if x 3

ì + £
ï

< <í
ï + ³î

  is :  

(A) 0 (B) 1 

(C) 2 (D) infinite  
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11. \$bZ f(x) = x3 – 3x2 + 12x – 18 : 

(A) R na {Za§Va õmg_mZ h¡   

(B) R na {Za§Va dY©_mZ h¡  

(C) R na Z Vmo {Za§Va dY©_mZ h¡ Am¡a Z hr {Za§Va õmg_mZ h¡  

(D) (– ¥, 0) na {Za§Va õmg_mZ h¡   

12. x2sin1 + , x Î úû

ù
êë

é p

4
,0  H$m à{V-AdH$bO h¡ : 

(A) cos x + sin x   (B) – cos x + sin x  

(C) cos x – sin x  (D) – cos x – sin x  

13. AdH$b g_rH$aU 
dx

dy  = F(x, y) g_KmVr` AdH$b g_rH$aU Zht hmoJm, `{X F(x, y)  

h¡ :  

(A) cos x – sin ÷
ø

ö
ç
è

æ

x

y
 (B) 

x

y
 

(C) 
xy

yx 22 +
 (D) cos2 ÷÷

ø

ö
çç
è

æ

y

x
 

14. {H$Ýht Xmo g{Xem| 
®
a  Am¡a 

®
b  Ho$ {bE, {ZåZ{b{IV H$WZm| _| go H$m¡Z-gm gX¡d ghr h¡ ?  

(A) 
®
a .

®
b  ³ ½

®
a ½½

®
b ½ (B) 

®
a .

®
b  = ½

®
a ½½

®
b ½ 

(C) 
®
a .

®
b  £ ½

®
a ½½

®
b ½ (D) 

®
a .

®
b  < ½

®
a ½½

®
b ½ 

15. {~ÝXþ (0, 1, 2) go x-Aj na S>mbo JE bå~ Ho$ nmX Ho$ {ZX}em§H$ h¢ :  

(A) (1, 0, 0) (B) (2, 0, 0) 

(C) ( 5 , 0, 0) (D) (0, 0, 0) 
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11. The function f(x) = x3 – 3x2 + 12x – 18 is :  

(A) strictly decreasing on R 

(B) strictly increasing on R 

(C) neither strictly increasing nor strictly decreasing on R  

(D) strictly decreasing on (– ¥, 0) 

12. Anti-derivative of x2sin1 + , x Î úû

ù
êë

é p

4
,0  is :  

(A) cos x + sin x   (B) – cos x + sin x  

(C) cos x – sin x  (D) – cos x – sin x  

13. The differential equation 
dx

dy
 = F(x, y) will not be a homogeneous 

differential equation, if F(x, y) is :  

(A) cos x – sin ÷
ø

ö
ç
è

æ

x

y
 (B) 

x

y
  

(C) 
xy

yx 22 +
 (D) cos2 ÷÷

ø

ö
çç
è

æ

y

x
 

14. For any two vectors 
®
a  and 

®
b , which of the following statements is 

always true ? 

(A) 
®
a .

®
b  ³ ½

®
a ½½

®
b ½ (B) 

®
a .

®
b  = ½

®
a ½½

®
b ½ 

(C) 
®
a .

®
b  £ ½

®
a ½½

®
b ½ (D) 

®
a .

®
b  < ½

®
a ½½

®
b ½ 

15. The coordinates of the foot of the perpendicular drawn from the point  

(0, 1, 2) on the x-axis are given by :  

(A) (1, 0, 0) (B) (2, 0, 0) 

(C) ( 5 , 0, 0) (D) (0, 0, 0) 
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16. EH$ a¡{IH$ àmoJ«m_Z g_ñ`m Ho$ g^r ì`damoYm| Ûmam {Z`V C^`{ZîR> joÌ H$hbmVm h¡ :  

(A) EH$ An[a~Õ joÌ  (B) EH$ BîQ>V_ joÌ  

(C) EH$ n[a~Õ joÌ  (D) EH$ gwg§JV joÌ  

17. _mZm {H$gr à`moJ _| E {H$gr à{VXe© g_pîQ> S H$s EH$ KQ>Zm h¡, Vmo P(S|E) ~am~a h¡ :  

(A) P(S 3 E) (B) P(E) 

(C) 1 (D) 0 

18. `{X A = [aij] EH$ 3 ´ 3 Amì`yh h¡, {Og_| aij = i – 3j h¡, Vmo {ZåZ{b{IV _| go H$m¡Z-gm 
JbV  h¡ ?  

(A) a11 < 0 (B) a12 + a21 = – 6 

(C) a13 > a31 (D) a31 = 0 

àíZ g§»`m 19 Am¡a 20 A{^H$WZ Ed§ VH©$ AmYm[aV àíZ h¢ & Xmo H$WZ {XE JE h¢ {OZ_| EH$ H$mo 
A{^H$WZ (A) VWm Xÿgao H$mo VH©$ (R) Ûmam A§{H$V {H$`m J`m h¡ & BZ àíZm| Ho$ ghr CÎma ZrMo {XE 
JE H$moS>m| (A), (B), (C) Am¡a (D) _| go MwZH$a Xr{OE &  

(A) A{^H$WZ (A) Am¡a VH©$ (R) XmoZm| ghr h¢ Am¡a VH©$ (R), A{^H$WZ (A) H$s ghr 
ì¶m»¶m H$aVm h¡ & 

(B) A{^H$WZ (A) Am¡a VH©$ (R) XmoZm| ghr h¢, naÝVw VH©$ (R), A{^H$WZ (A) H$s ghr 
ì¶m»¶m Zht  H$aVm h¡ & 

(C) A{^H$WZ (A) ghr h¡, naÝVw VH©$ (R) µJbV h¡ & 

(D) A{^H$WZ (A) µJbV h¡, naÝVw VH©$ (R) ghr h¡ & 

19. A{^H$WZ (A) :  {H$gr EH$ g_{_V Amì ỳh A Ho$ {bE, B¢AB EH$ {df_ g_{_V 
Amì`yh hmoVm h¡ &  

 VH©$ (R) : EH$ dJ© Amì`yh P {df_ g_{_V Amì ỳh H$hbmEJm, `{X P¢ = – P. 

20. A{^H$WZ (A) :  (
®
b . 

®
c ) 

®
a  EH$ A{Xe am{e h¡ &  

 VH©$ (R) : Xmo g{Xem| H$m A{Xe (S>m°Q>) JwUZ\$b EH$ A{Xe am{e hmoVr h¡ &  
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16. The common region determined by all the constraints of a linear 

programming problem is called :  

(A) an unbounded region  (B) an optimal region  

(C) a bounded region  (D) a feasible region  

17. Let E be an event of a sample space S of an experiment, then P(S|E) =  

(A) P(S 3 E) (B) P(E) 

(C) 1 (D) 0 

18. If A = [aij] be a 3 ´ 3 matrix, where aij = i – 3j, then which of the following 

is false ?  

(A) a11 < 0 (B) a12 + a21 = – 6 

(C) a13 > a31 (D) a31 = 0 

Questions number 19 and 20 are Assertion and Reason based questions. Two 

statements are given, one labelled Assertion (A) and the other labelled Reason 

(R). Select the correct answer from the codes (A), (B), (C) and (D) as given below.  

(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the 

correct explanation of the Assertion (A). 

(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not 

the correct explanation of the Assertion (A). 

(C) Assertion (A) is true, but Reason (R) is false.  

(D) Assertion (A) is false, but Reason (R) is true.  

19. Assertion (A) : For any symmetric matrix A, B¢AB is a skew-symmetric 

matrix.  

 Reason (R) : A square matrix P is skew-symmetric if P¢ = – P.  

20. Assertion (A) : (
®
b  . 

®
c ) 

®
a  is a scalar quantity.  

 Reason (R) : Dot product of two vectors is a scalar quantity.  
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IÊS> I 

Bg IÊS> _| A{V bKw-CÎmar` (VSA) àH$ma Ho$ àíZ h¢, {OZ_| àË òH$ Ho$ 2 A§H$ h¢ & 

 

21. kmV H$s{OE {H$ \$bZ f(x) = x2 – 6x + 3, [4, 6] _| dY©_mZ h¡ `m õmg_mZ h¡ &  

 

22. (H$) sin–1 1
–

2

æ ö
ç ÷
è ø

 + cos–1 3
–

2

æ ö
ç ÷ç ÷
è ø

 + cot–1 ÷
ø

ö
ç
è

æ p

3

4
tan  H$m _mZ kmV H$s{OE &  

 AWdm 

(I) f(x) = cos–1 (1 – x2) H$m àm§V kmV H$s{OE & BgH$m n[aga ^r kmV H$s{OE &  

 

23. (H$) `{X f(x) = ½tan 2x½ h¡, Vmo x = 
3

p  na f ¢(x) H$m _mZ kmV H$s{OE &  

 AWdm 

(I) `{X y = cosec (cot–1 x) h¡, Vmo {gÕ H$s{OE {H$ 
dx

dy
x1 2+  – x = 0. 

 

24. `{X \$bZ f(x) = x + 
x

1  (x ¹ 0) Ho$ ñWmZr` CƒV_ Am¡a ñWmZr` {ZåZV_ _mZ,  

H«$_e: M Am¡a m Ûmam àXÎm h¢, Vmo (M – m) H$m _mZ kmV H$s{OE &  

25. kmV H$s{OE :  

  
1e

1–e
x4

x4

+ò dx 
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SECTION B 

This section comprises very short answer (VSA) type questions of 2 marks each. 

 

21. Determine whether the function f(x) = x2 – 6x + 3 is increasing or 

decreasing in [4, 6].  

 

22. (a) Find the value of sin–1 1
–

2

æ ö
ç ÷
è ø

 + cos–1 3
–

2

æ ö
ç ÷ç ÷
è ø

 + cot–1 ÷
ø

ö
ç
è

æ p

3

4
tan .  

 OR 

(b) Find the domain of f(x) = cos–1 (1 – x2). Also, find its range.  

23. (a) If f(x) = ½tan 2x½, then find the value of f ¢(x) at x = 
3

p
.  

 OR 

(b) If y = cosec (cot–1x), then prove that 
dx

dy
x1 2+  – x = 0.  

24. If M and m denote the local maximum and local minimum values of the 

function f(x) = x + 
x

1
 (x ¹ 0) respectively, find the value of (M – m).  

25. Find :  

   
1e

1–e
x4

x4

+ò dx  
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IÊS> J 

Bg IÊS> _| bKw-CÎmar` (SA) àH$ma Ho$ àíZ h¢, {OZ_| àË òH$ Ho$ 3 A§H$ h¢ & 

26. nmgm| Ho$ EH$ Omo‹S>o H$mo EH$ gmW CN>mbm OmVm h¡ & `{X X, nmgm| Ho$ D$nar \$bH$m| na AmB© 
g§»`mAm| Ho$ nyU©-A§Va H$mo ì`º$ H$aVm h¡, Vmo X H$m àm{`H$Vm ~§Q>Z kmV H$s{OE &  

27. kmV H$s{OE :  

   ò x2 log (x2 – 1) dx 

28. (H$) `{X y = (log x)2 h¡, Vmo {gÕ H$s{OE {H$ x2y² + xy¢ = 2. 

 AWdm 

(I) `{X y = sin (tan–1 ex) h¡, Vmo 
dx

dy , x = 0 na, kmV H$s{OE &   

29. (H$) _mZ kmV H$s{OE :  

                       
x2

x–2
2

2–
+ò dx 

 AWdm 

(I) kmV H$s{OE :  

  
2

1

x [(log x) – 3 log x – 4]ò dx 

30. (H$) AdH$b g_rH$aU 2xy + y2 – 2x2 
dx

dy
 = 0 H$m {d{eîQ> hb kmV H$s{OE; {X`m 

J`m h¡ y = 2, O~ x = 1 h¡ &  
 AWdm 

(I) AdH$b g_rH$aU  y dx = (x + 2y2) dy  H$m ì`mnH$ hb kmV H$s{OE & 

31. {Ì^wO ABC Ho$ erfm] Ho$ pñW{V g{Xe A(2
^
i  – 

^
j  + 

^
k ), B(

^
i  – 3

^
j  – 5

^
k ) Am¡a   

C(3
^
i  – 4

^
j  – 4

^
k ) h¢ & {Ì ŵO ABC Ho$ g^r H$moU kmV H$s{OE & 
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SECTION C 

This section comprises short answer (SA) type questions of 3 marks each. 

26. A pair of dice is thrown simultaneously. If X denotes the absolute 

difference of the numbers appearing on top of the dice, then find the 

probability distribution of X.  

27. Find :  

   ò x2 log (x2 – 1) dx  

28. (a) If y = (log x)2, prove that  x2y² + xy¢ = 2.  

 OR 

(b) If y = sin (tan–1 ex), then find 
dx

dy
 at x = 0.  

29. (a) Evaluate :  

   
x2

x–2
2

2–
+ò dx 

 OR 

(b) Find :  

  
2

1

x [(log x) – 3 log x – 4]ò dx 

30. (a) Find the particular solution of the differential equation given by 

2xy + y2 – 2x2 
dx

dy
 = 0; y = 2, when x = 1. 

 OR 

(b) Find the general solution of the differential equation :  

  y dx = (x + 2y2) dy 

31. The position vectors of vertices of ∆ ABC are A(2
^
i – 

^
j  + 

^
k ),                  

B(
^
i – 3

^
j – 5

^
k ) and C(3

^
i – 4

^
j – 4

^
k ). Find all the angles of ∆ ABC.  
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IÊS> K 
 

Bg IÊS> _| XrK©-CÎmar` (LA) àH$ma Ho$ àíZ h¢, {OZ_| àË òH$ Ho$ 5 A§H$ h¢ & 

32. `{X àW_ MVwWmªe _| y2 = 4x, x = 1 Am¡a x-Aj go {Kao joÌ H$m joÌ\$b A1 Ûmam àXÎm h¡ 

Am¡a y2 = 4x, x = 4 go {Kao joÌ H$m joÌ\$b A2 Ûmam àXÎm h¡, Vmo A1 : A2 kmV H$s{OE & 

33. (H$) Xem©BE {H$ f : R ® R Omo f(x) = x2 + x + 1 Ûmam n[a^m{fV h¡, Z Vmo EH¡$H$s h¡ 

Am¡a Z hr AmÀN>mXH$ h¡ & x Ho$ do g^r _mZ ^r kmV H$s{OE {OZHo$ {bE f(x) = 3 

h¡ &  

 AWdm 

(I) N ´ N (Ohm± N àmH¥$V g§»`mAm| H$m g_wƒ` h¡) _| EH$ g§~§Y  

 R, (a, b) R (c, d) g 
c

a
 = 

d

b  Ûmam n[a^m{fV h¡ & Xem©BE {H$ R EH$ Vwë`Vm 

g§~§Y h¡ & 

34. {Ì^wO ABC Ho$ erf© A(1, 1, 0), B(1, 2, 1) Am¡a C(– 2, 2, – 1) h¢ & A Am¡a B go 

{ZH$br _mpÜ`H$mAm| Ho$ g_rH$aU kmV H$s{OE & Bg àH$ma àmßV g_rH$aUm| H$m à`moJ H$aHo$  

Ho$ÝÐH$ Ho$ {ZX}em§H$ kmV H$s{OE &  

35. (H$) Amì`yhm| H$m à`moJ H$aHo$, {ZåZ g_rH$aU-{ZH$m` H$mo hb H$s{OE :  

             4
z

10

y

3

x

2
=++ ,  1

z

5

y

6
–

x

4
=+ ,  2

z

20
–

y

9

x

6
=+  

  Ohm± x, y, z ¹ 0 

 AWdm 

(I) `{X ú
û

ù
ê
ë

é
=

1xcot–

xcot1
A  h¡, Vmo Xem©BE {H$ A¢ ú

û

ù
ê
ë

é
=

x2cos–x2sin

x2sin–x2cos–
A 1– . 
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SECTION D 

This section comprises long answer (LA) type questions of 5 marks each. 

32. If A1 denotes the area of region bounded by y2 = 4x, x = 1 and x-axis  

in the first quadrant and A2 denotes the area of region bounded by  

y2 = 4x, x = 4, find A1 : A2.  

33. (a) Show that a function f : R ® R defined as f(x) = x2 + x + 1 is 

neither one-one nor onto. Also, find all the values of x for which   

f(x) = 3.  

 OR 

(b) A relation R is defined on N ´ N (where N is the set of natural 

numbers) as (a, b) R (c, d) g 
c

a
 = 

d

b
. Show that R is an equivalence 

relation.  

34. The vertices of ∆ ABC are A(1, 1, 0), B(1, 2, 1) and C(– 2, 2, – 1). Find the 

equations of the medians through A and B. Use the equations so 

obtained to find the coordinates of the centroid.  

35. (a) Solve the following system of equations, using matrices :  

             4
z

10

y

3

x

2
=++ ,   1

z

5

y

6
–

x

4
=+ ,   2

z

20
–

y

9

x

6
=+  

   where x, y, z ¹ 0 

 OR 

(b) If ú
û

ù
ê
ë

é
=

1xcot–

xcot1
A , show that A¢ ú

û

ù
ê
ë

é
=

x2cos–x2sin

x2sin–x2cos–
A 1– . 
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IÊS> L> 

Bg IÊS> _| 3 àH$aU AÜ``Z AmYm[aV àíZ h¢, {OZ_| àË òH$ Ho$ 4 A§H$ h¢ & 
àH$aU AÜ``Z – 1 

36. O~ n[adhZ {H$E JE `m{Ì`m| H$s g§»`m H$mo ì`{º$JV MmoQ>m| Am¡a _¥Ë ẁ Ho$ `moJ Ho$ AmYma na 
_mnm OmVm h¡, Vmo hdmB© OhmO A~ VH$ n[adhZ H$m g~go gwa{jV gmYZ h¡ &  

    

 
 {nN>bo [aH$m°S>© ~VmVo h¢ {H$ hdmB© OhmO Ho$ XþK©Q>ZmJ«ñV hmoZo H$s àm{`H$Vm 0·00001% h¡ & 

BgHo$ Abmdm, 95% g§̂ mdZm h¡ {H$ {d_mZ XþK©Q>Zm Ho$ ~mX Or{dV ~Mo bmoJ hm|Jo & _mZ 

br{OE {H$ XþK©Q>Zm Z hmoZo H$s pñW{V _| g^r `mÌr Or{dV ~M OmVo h¢ &  

 _mZ br{OE E1 KQ>Zm h¡ {H$ EH$ {d_mZ H$s XþK©Q>Zm hþB© h¡ Am¡a E2 dh KQ>Zm h¡ {H$ H$moB© 

XþK©Q>Zm Zht hþB© h¡ & _mZm A dh KQ>Zm h¡ {Og_| `mÌr `mÌm Ho$ ~mX Or{dV ~M OmVo h¢ &  

 Cn`w©º$ gyMZm Ho$ AmYma na, {ZåZ àíZm| Ho$ CÎma Xr{OE : 

(i) hdmB© OhmO Ho$ XþK©Q>ZmJ«ñV Z hmoZo H$s àm{`H$Vm kmV H$s{OE &  1 

(ii) P(A | E1) + P(A | E2) kmV H$s{OE & 1 

(iii) (H$) P(A) kmV H$s{OE &  2 
 AWdm 

(iii) (I) P(E2 | A) kmV H$s{OE &  2 
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SECTION E 

This section comprises 3 case study based questions of 4 marks each.  

Case Study – 1 

36. Airplanes are by far the safest mode of transportation when the number 

of transported passengers are measured against personal injuries and 

fatality totals. 

      

 
 Previous records state that the probability of an airplane crash is 

0·00001%. Further, there are 95% chances that there will be survivors 

after a plane crash. Assume that in case of no crash, all travellers 

survive. 

 Let E1 be the event that there is a plane crash and E2 be the event that 

there is no crash.  Let A be the event that passengers survive after the 

journey.  

 On the basis of the above information, answer the following questions : 

(i) Find the probability that the airplane will not crash.  1 

(ii) Find P(A | E1) + P(A | E2). 1 

(iii) (a)  Find P(A). 2 

 OR 

(iii) (b) Find  P(E2 | A). 2 
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àH$aU AÜ``Z – 2 

37. AmodañnrqS>J go BªYZ H$s InV ~‹T> OmVr h¡ Am¡a Q>m`a VWm ŷ{_ _| Kf©U Am¡a dm`w à{VamoY 

Ho$ n[aUm_ñdê$n BªYZ H$s ~MV H$_ hmo OmVr h¡ & O~{H$ dmhZ AbJ-AbJ J{V na 

BîQ>V_ BªYZ AW©ì`dñWm VH$ nhþ±MVo h¢, BªYZ bm^ Am_Vm¡a na 80 km/h go D$na H$s J{V 

na VoµOr go KQ>Vm h¡ &  
   

 

 

 Hw$N> ~mYmAm| Ho$ VhV BªYZ H$s InV F (l/100 km) Am¡a J{V V (km/h) Ho$ ~rM g§~§Y   

F = 
4

V
–

500

V2

 + 14 Ûmam {X`m J`m h¡ &  

 Cn ẁ©º$ gyMZm Ho$ AmYma na, {ZåZ àíZm| Ho$ CÎma Xr{OE : 

(i) F kmV H$s{OE, O~{H$ V = 40 km/h. 1 

(ii) 
dV

dF  kmV H$s{OE &  1 

(iii) (H$) dh J{V V kmV H$s{OE O~ BªYZ InV F Ý ỳZV_ hmoVr h¡ &  2 

 AWdm 

(iii) (I) V J{V go 600 km H$s `mÌm H$aZo Ho$ {bE Amdí`H$ BªYZ H$s _mÌm kmV 

H$s{OE {Og na 
dV

dF  = – 0·01 h¡ &  2 
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Case Study – 2 

37. Overspeeding increases fuel consumption and decreases fuel economy as a 

result of tyre rolling friction and air resistance. While vehicles reach optimal 

fuel economy at different speeds, fuel mileage usually decreases rapidly at 

speeds above 80 km/h.  

 

 

 The relation between fuel consumption F (l/100 km) and speed V (km/h) 

under some constraints is given as F = 
4

V
–

500

V2

 + 14. 

 On the basis of the above information, answer the following questions : 

(i) Find F, when V = 40 km/h. 1 

(ii) Find 
dV

dF
. 1 

(iii) (a)  Find the speed V for which fuel consumption F is minimum.  2 

 OR 

(iii) (b) Find the quantity of fuel required to travel 600 km at the 

speed V at which 
dV

dF
 = – 0·01.  2 
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àH$aU AÜ``Z – 3 

38. {gV§~a H$m _hrZm nyao Xoe _| amîQ>́r` nmofU _mh Ho$ ê$n _| _Zm`m OmVm h¡ & eara H$mo 

Amdí`H$ C{MV nmofH$ VÎd àXmZ H$aZo Ho$ {bE ñdñW Am¡a g§Vw{bV Amhma H$m nmbZ 

H$aZm _hÎdnyU© h¡ & g§Vw{bV Amhma h_| _mZ{gH$ ê$n go ^r {\$Q> aIVm h¡ Am¡a D$Om© Ho$ 

~ohVa ñVa H$mo ~‹T>mdm XoVm h¡ &  

 

          AmH¥${V-1                                         AmH¥${V-2 

 EH$ Amhma {deofk Xmo àH$ma Ho$ ImÚ nXmWm], \y$S> X (x kg) Am¡a \y$S> Y (y kg), Omo 

H«$_e: < 16/kg Am¡a < 20/kg H$s Xa na CnbãY h¢, go `wº$ Amhma H$s bmJV H$mo H$_ 

H$aZm MmhVm h¡ & ì`damoYm| Ûmam {Z`V gwg§JV joÌ AmH¥${V-2 _| {XIm`m J`m h¡ &  

 Cn ẁ©º$ gyMZm Ho$ AmYma na, {ZåZ àíZm| Ho$ CÎma Xr{OE : 

(i) AmH¥${V-2 go CZ g^r ì`damoYm| H$mo nhMm{ZE Am¡a {b{IE Omo {XE JE gwg§JV joÌ 

H$mo {ZYm©[aV H$aVo h¢ &  2 

(ii) `{X CÔoí` bmJV \$bZ Z = 16x + 20y H$mo Ý`yZV_ H$aZm hmo, Vmo x Am¡a y H$m 

_mZ kmV H$s{OE {Og na bmJV Ý`yZV_ hmo & `h _mZVo hþE {H$ {XE JE An[a~Õ 

joÌ go Ý`yZV_ bmJV g§̂ d h¡, Ý`yZV_ bmJV ^r kmV H$s{OE &  2 
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Case Study – 3 

38. The month of September is celebrated as the Rashtriya Poshan Maah 

across the country. Following a healthy and well-balanced diet is crucial 

in order to supply the body with the proper nutrients it needs. A balanced 

diet also keeps us mentally fit and promotes improved level of energy. 

 

                   Figure-1                                                          Figure-2 

 A dietician wishes to minimize the cost of a diet involving two types of 

foods, food X (x kg) and food Y (y kg) which are available at the rate of  

< 16/kg and < 20/kg respectively. The feasible region satisfying the 

constraints is shown in Figure-2.  

 On the basis of the above information, answer the following questions : 

(i) Identify and write all the constraints which determine the given 

feasible region in Figure-2. 2 

(ii) If the objective is to minimize cost Z = 16x + 20y, find the values of       

x and y at which cost is minimum. Also, find minimum cost 

assuming that minimum cost is possible for the given unbounded 

region. 2 
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out with a note “Extra Question”. 

11 No marks to be deducted for the cumulative effect of an error. It should be penal-

ized only once. 

12 A full scale of marks  (example 0 to 80/70/60/50/40/30 marks as given in 

Question Paper) has to be used. Please do not hesitate to award full marks if the 

answer deserves it. 
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syllabus and number of questions in question paper. 

14 
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concerned, it is again reiterated that the instructions be followed meticulously and 
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over to the title page, correctly totalled and written in figures and words. 

19 
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Q. 

No

. 

 EXPECTED OUTCOMES/VALUE POINTS Mar

ks 

 SECTION A 

Questions no. 1 to 18 are multiple choice questions (MCQs) and 

questions number 19 and 20 are Assertion-Reason based questions of 1 

mark each 

 

1.  

 

 

Sol

. 
(D) −

1

√𝑒−2𝑥−1
 1 

2. 

 

 

Sol

. 

(B) not defined, 2 1 

3.   

Sol

. 
(B) 𝑗̂ 1 

4.   

Sol

. 

(D) 2, -1, 3 1 
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5.  

 

 

Sol

. 
(C) 

𝜋

3
 1 

6.   

Sol

. 
(A) 900 1 

7.   

 

 

 

 

Sol

. 

(A) 0 1 

8. 

 

 

 

  

Sol

. 

(C) Bijective 1 
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9.   

Sol

. 

 

(D) 4 1 

 

10. 

 

  

Sol

. 

(B) 1   1 

11.   

Sol

. 

(B) strictly increasing on R 1 

12.   

Sol

. 

(B) – cos x + sin x 1 
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13.  

 

 

Sol

. 
(𝐴)𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛 (

𝑦

𝑥
) 

1 

14.  

 

 

Sol

. 
(C) 𝑎⃗. 𝑏⃗⃗ ⩽ |𝑎⃗||𝑏⃗⃗| 1 

15.   

Sol

. 

(D) (0, 0, 0) 1 

16.   

Sol

. 

(D) a feasible region 1 

17.   

Sol

. 

(C) 1 1 
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18.  

 

 

Sol

. 

 

(C) 𝑎13 > 𝑎31 1 

 

 

 

19.   

Sol

. 

 (D)   Assertion (A) is false, but Reason (R) is true 1 

 

20. 

 

 

 

 

 

 

 

Sol

. 

 

(D) Assertion (A) is false, but Reason (R) is true. 

 

 

 

 

SECTION B 

21.   
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Sol

. f(x)= x2 – 6x + 3, 𝑥 ∈ [4,6] 

We  h av e   𝑓′(𝑥) = 2𝑥 − 6 

Fo r  a l l  x  s u ch  t h a t  4  <  x  <  6 ,  2 < 2𝑥 − 6 < 6 

⟹ 𝑓′(𝑥) > 0 for all 𝑥 ∈ (4,6) 

Hence, f is increasing over [4, 6]. 

  

 

 

 

1 

 

 

 

 

1 

22.   

Sol

. 
The given expression =  

−𝜋

6
+ (𝜋 −

𝜋

6
) +

𝜋

6
 

=
5𝜋

6
 

 

1
1

2
 

1

2
 

 

 

OR 

 

 

 

 

Sol

. 
−1 ⩽ 1 − 𝑥2 ⩽ 1 

 

⟹ 0 ⩽ 𝑥2 ⩽ 2 

Domain = [−√2,√2] 
 

Range = [0, 𝜋] 
 

1

2
 

1

2
 

 

1 

23.   

Sol

. 

 

𝑓(𝑥) = −𝑡𝑎𝑛2𝑥,  
𝜋

4
< 𝑥 <

𝜋

2
 

𝑓′(𝑥) = −2𝑠𝑒𝑐22𝑥,  
𝜋

4
< 𝑥 <

𝜋

2
 

𝑓′(
𝜋

3
) = −2(−2)2 = −8 

 

 

 

 

 

 

1 
1

2
 

1

2
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OR 

   

Sol

. 
𝑦 = √1 + 𝑐𝑜𝑡2(𝑐𝑜𝑡−1𝑥) = √1 + 𝑥2 

 

⟹
𝑑𝑦

𝑑𝑥
=

𝑥

√1 + 𝑥2
 

 

⟹ √1 + 𝑥2
𝑑𝑦

𝑑𝑥
− 𝑥 = 0 

 

1

2
 

 

1 

 
1

2
 

24.   

 

 

 

Sol

. 

 

𝑓′(𝑥) = 1 −
1

𝑥2
=

𝑥2 − 1

𝑥2
=

(𝑥 + 1)(𝑥 − 1)

𝑥2
 

𝑓′(𝑥) = 0 ⟹ 𝑥 = −1,  1 

 

𝑓′′(𝑥) =
2

𝑥3 ⟹ 𝑓′′(−1) = −2 < 0 

⸫ -1 is a point of local maximum 

The local maximum value = 𝑓(−1) = −2 = 𝑀 

𝑓′′(1) = 2 > 0 

⸫ 1 is point of local minimum 

The local minimum value = 𝑓(1) = 2 = 𝑚  

 

𝑀 − 𝑚 = −4 

 

 

 
1

2
 

 

 

 
1

2
 

 
1

2
 

1

2
 

25.  

 

 

 

Sol

. 
Given integral =∫

𝑒4𝑥−1

𝑒4𝑥+1
𝑑𝑥 

=∫
𝑒2𝑥−𝑒−2𝑥

𝑒2𝑥+𝑒−2𝑥 𝑑𝑥 

 

=
1

2
∫

2(𝑒2𝑥−𝑒−2𝑥)

𝑒2𝑥+𝑒−2𝑥
𝑑𝑥 

=
1

2
𝑙𝑜𝑔|𝑒2𝑥 + 𝑒−2𝑥| + 𝐶 

 
1

2
 

 
1

2
 

 

1 
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Section C 

26.   

Sol

. 

 

X 0 1 2 3 4 5 

P(X) 6

36
=

1

6
 

10

36
=

5

18
 

8

36
=

2

9
 

6

36
=

1

6
 

4

36
=

1

9
 

2

36
=

1

18
 

 

 

 

 
1

2
× 6
= 3 

 

 

27. 

 

 

 

 

 

Sol

. 

 

Given integral = log(𝑥2 − 1) ×
𝑥3

3
− ∫

2𝑥

𝑥2−1
×

𝑥3

3
𝑑𝑥 

= log(𝑥2 − 1) ×
𝑥3

3
−

2

3
∫

𝑥4 − 1 + 1

𝑥2 − 1
𝑑𝑥 

= log(𝑥2 − 1) ×
𝑥3

3
−

2

3
[∫(𝑥2 + 1)𝑑𝑥 + ∫

1

𝑥2 − 1
𝑑𝑥] 

= log(𝑥2 − 1) ×
𝑥3

3
−

2

3
[
𝑥3

3
+ 𝑥 +

1

2
𝑙𝑜𝑔 |

𝑥 − 1

𝑥 + 1
|] + 𝐶 

  

 

 

1 

 

 

 

 

1 

 

 

1 

28. 

 

 

  

Sol

. 

Differentiating both sides w.r.t. x, we get 

y′ =
2logx

x
 

⟹ 𝑥y′ = 2logx 

 

⟹ 𝑥y′′ + y′ =
2

𝑥
 

 

⟹ 𝑥2y′′ + xy′ = 2 

 

  

 

 

1 

 

 

 

1
1

2
 

 
1

2
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 OR  

 

 

 

Sol

. 

𝑑𝑦

𝑑𝑥
= cos⁡(𝑡𝑎𝑛−1(𝑒𝑥)) ×

𝑒𝑥

1 + 𝑒2𝑥
 

(
𝑑𝑦

𝑑𝑥
)
𝑥=0

= 𝑐𝑜𝑠
𝜋

4
×

1

2
=

1

2√2
 

  

 

2 

 

 

1 

29. 

 

 

 

 

  

Sol

. (a) ∫ √
2−𝑥

2+𝑥

2

−2
𝑑𝑥 

=⁡∫
2−𝑥

√4−𝑥2
𝑑𝑥

2

−2
 

 

=⁡∫
2

√4−𝑥2
𝑑𝑥

2

−2
− ∫

𝑥

√4−𝑥2
𝑑𝑥

2

−2
 

 

= 2∫
2

√4−𝑥2
𝑑𝑥 − 0

2

0
  [

2

√4−𝑥2
is even,  

𝑥

√4−𝑥2
  is odd] 

= 4∫
1

√4−𝑥2
𝑑𝑥

2

0
 

= 4⁡𝑠𝑖𝑛−1 𝑥

2
|
0

2

 

 

= 2𝜋 

 

 
1

2
 

1

2
 

 

1 

 

 
1

2
 

1

2
 

 OR  

   

Sol

. 
Let ⁡𝑙𝑜𝑔𝑥 = 𝑡 ⟹

1

𝑥
𝑑𝑥 = 𝑑𝑡 

 

The given integral becomes = ∫
1

𝑡2−3𝑡−4
𝑑𝑡 

= ∫
1

(𝑡 −
3
2)

2

− (
5
2)

2 𝑑𝑥 

=
1

5
𝑙𝑜𝑔 |

𝑡 − 4

𝑡 + 1
| + 𝐶 

 

1

2
 

1

2
 

 

1 

 

 
1

2
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=
1

5
𝑙𝑜𝑔 |

𝑙𝑜𝑔𝑥 − 4

𝑙𝑜𝑔𝑥 + 1
| + 𝐶 

 

       
1

2
 

30.   

Sol

. 

Given differential equation can be written as  

𝑑𝑦

𝑑𝑥
=

2𝑥𝑦 + 𝑦2

2𝑥2
=

𝑦

𝑥
+

𝑦2

2𝑥2
 

Let 𝑦 = 𝑣𝑥 ⟹
𝑑𝑦

𝑑𝑥
= 𝑣 + 𝑥

𝑑𝑣

𝑑𝑥
 

The equation becomes 

𝑥
𝑑𝑣

𝑑𝑥
=

1

2
𝑣2 

⟹
𝑑𝑣

𝑣2
=

1

2
×

𝑑𝑥

𝑥
 

Integrating both sides, we get 

 
−1

𝑣
=

1

2
𝑙𝑜𝑔|𝑥| + 𝐶 

⟹ −
𝑥

𝑦
=

1

2
𝑙𝑜𝑔|𝑥| + 𝐶 

𝑦 = 2, 𝑥 = 1 gives ⁡𝐶 = −
1

2
 

The particular solution is  

−
𝑥

𝑦
=

1

2
𝑙𝑜𝑔|𝑥| −

1

2
⁡𝑜𝑟, 𝑦 =

2𝑥

1 − 𝑙𝑜𝑔|𝑥|
 

 

 
1

2
 

 
1

2
 

 

 
1

2
 

 

 

 

 

1 

 

 

 
1

2
 

 OR  

   

Sol

. 

Given differential equation can be written as 
𝑑𝑥

𝑑𝑦
−

𝑥

𝑦
= 2𝑦 

Integrating Factor = 𝑒
∫

−1

𝑦
𝑑𝑦

=
1

𝑦
 

Solution is 𝑥
1

𝑦
= ∫2𝑑𝑦 

⟹
𝑥

𝑦
= 2𝑦 + 𝐶 

⟹ 𝑥 = 2𝑦2 + 𝐶𝑦 

 

 

1 

 

1 

 
1

2
 

 
1

2
 

31.   
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Sol

. 

 

𝑐𝑜𝑠𝐴 =
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ . 𝐴𝐶⃗⃗⃗⃗⃗⃗

|𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ||𝐴𝐶⃗⃗⃗⃗⃗⃗ |
=

(−𝑖̂ − 2𝑗̂ − 6𝑘̂). (𝑖̂ − 3𝑗̂ − 5𝑘̂)

√41√35
=

35

√41√35
=

√35

√41
 

𝐴 = 𝑐𝑜𝑠−1 (
√35

√41
) 

𝑐𝑜𝑠𝐵 =
𝐵𝐴⃗⃗⃗⃗ ⃗⃗ . 𝐵𝐶⃗⃗⃗⃗⃗⃗

|𝐵𝐴⃗⃗⃗⃗ ⃗⃗ ||𝐵𝐶⃗⃗⃗⃗⃗⃗ |
=

(𝑖̂ + 2𝑗̂ + 6𝑘̂). (2𝑖̂ − 𝑗̂ + 𝑘̂)

√41√6
=

6

√41√6
=

√6

√41
 

 

𝐵 = 𝑐𝑜𝑠−1 (
√6

√41
) 

𝑐𝑜𝑠𝐶 =
𝐶𝐵⃗⃗⃗⃗⃗⃗ . 𝐶𝐴⃗⃗⃗⃗⃗⃗

|𝐶𝐵⃗⃗⃗⃗⃗⃗ ||𝐶𝐴⃗⃗⃗⃗⃗⃗ |
=

(−2𝑖̂ + 𝑗̂ − 𝑘̂). (−𝑖̂ + 3𝑗̂ + 5𝑘̂)

|𝐶𝐵⃗⃗⃗⃗⃗⃗ ||𝐶𝐴⃗⃗⃗⃗⃗⃗ |
= 0 

cos C = 0     ⟹ 𝐶 =
𝜋

2
 

 

 

 

 

 

1 

 

 

 

 

 

1 

 

 

 

 

1 

32.   

Sol

. 

 
 

 

 

 

𝐴1 = Area⁡(region OABO) = ∫ 2√𝑥
1

0
𝑑𝑥⁡= 2 [

𝑥
3
2

3

2

]|
0

1

= 
4

3
 

 

𝐴2 = Area⁡(region ODEO) = 2∫ 2√𝑥
4

0
𝑑𝑥 = 4 ×

2

3
[23] = 

64

3
 

 

 

 

 

 

 

 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 

 

 

1 
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𝐴1: 𝐴2 =
4

3
:
64

3
= 1: 16 

 

 

 

1 

33. 

 

 

Sol

. 
Let 𝑓(𝑥1) = 𝑓(𝑥2)⁡𝑓𝑜𝑟⁡𝑠𝑜𝑚𝑒⁡𝑥1, 𝑥2 ∈ 𝑅 

Then 𝑥1
2 + 𝑥1 + 1 = 𝑥2

2 + 𝑥2 + 1 

⟹ (𝑥1 − 𝑥2)(1 + 𝑥1 + 𝑥2) = 0 

⟹ 𝑥1 − 𝑥2 = 0 or 𝑥1 + 𝑥2 = −1 

⟹ 𝑥1 = 𝑥2⁡or 𝑥1 + 𝑥2 = −1 so if 𝑥1+𝑥2 = −1, 𝑥1 ≠ 𝑥2 

 

 

Hence f is not one -one 

 

Let y = f(x) where 𝑥 ∈ 𝑅 

Then 𝑦 = 𝑥2 + 𝑥 + 1⁡.  
 

⟹ 𝑥2 + 𝑥 + 1 − 𝑦 = 0 

 

⟹ 𝑥 =
−1 ± √4𝑦 − 3

2
 

For x to be real, 4𝑦 − 3 ≥ 0 

⟹ y ≥
3

4
 

 

Hence, range = [
3

4
,∞) ≠ 𝑐𝑜𝑑𝑜𝑚𝑎𝑖𝑛 

Hence, f is not onto. 

 

 𝑓(𝑥) = 3 ⟹ 𝑥2 + 𝑥 + 1 = 3 ⟹ 𝑥2 + 𝑥 − 2 = 0 

⟹ 𝑥 =
−1 ± √9

2
= −2,1 

 

 

 

 

 

 

 

 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 

 

 

1 

 

 OR 

 

 

 

 

 

Sol Let (𝑎, 𝑏) ∈ 𝑁 × 𝑁  
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. We have  
𝑎

𝑎
=

𝑏

𝑏
   

This implies that (a, b) R (a, b) ∀(𝑎, 𝑏) ∈ 𝑁 × 𝑁 

Hence R is reflexive  

 

Let (a, b) R (c, d) for some (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝑁 × 𝑁 

Then 
𝑎

𝑐
=

𝑏

𝑑
  

⟹
𝑐

𝑎
=

𝑑

𝑏
  

⟹(c, d) R (a, b) 

Hence, R is symmetric. 

Let (a, b) R (c, d), (c, d) R (e, f) for some (𝑎, 𝑏), (𝑐, 𝑑), (𝑒, 𝑓) ∈ 𝑁 × 𝑁 

Then 
𝑎

𝑐
=

𝑏

𝑑
,
𝑐

𝑒
=

𝑑

𝑓
  

⟹
𝑎

𝑒
=

𝑏

𝑓
 

⟹(a, b) R (e, f) 

Hence, R is transitive 

Thus, R is an equivalence relation. 

 

 

 

1
1

2
 

 

 

 

 

 

1
1

2
 

 

 

 

 

 

 

2 

 

34  

 

 

Sol

. 
The mid-point of the BC is (

−1

2
, 2, 0) 

The equation of the median through A is 
𝑥 − 1

−1
2 − 1

=
𝑦 − 1

2 − 1
=

𝑧

0
 

⟹
𝑥 − 1

−3
=

𝑦 − 1

2
=

𝑧

0
……………… . (1) 

The mid-point of the AC is (
−1

2
,
3

2
,
−1

2
) 

The equation of the median through B is 
𝑥 − 1

−1
2 − 1

=
𝑦 − 2

3
2 − 2

=
𝑧 − 1

−1
2 − 1

 

⟹⁡
𝑥 − 1

−3
=

𝑦 − 2

−1
=

𝑧 − 1

−3
……… . (2) 

 

Any point on the line (1) is (−3𝜆 + 1,2𝜆 + 1,0) 

Any point on the line (2) is (-3𝜇 + 1,−𝜇 + 2,−3𝜇 + 1) 

For the point of intersection,  

−3𝜆 + 1 = −3𝜇 + 1,2𝜆 + 1 = −𝜇 + 2,0 = −3𝜇 + 1 

⟹ 𝜆 = 𝜇 =
1

3
 

The coordinates of the centroid are (0,
5

3
, 0) 

 

1

2
 

 

 

 

 

1 
1

2
 

 

 

 

 

1 
1

2
 

1

2
 

 
1

2
 

1

2
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35.   

Sol

. 

Given system of linear equations is equivalent to AX = B, where 

 

𝐴 = [
2 3 10
4 −6 5
6 9 −20

], 𝑋 =

[
 
 
 
 
1

𝑥
1

𝑦

1

𝑧]
 
 
 
 

, 𝐵 = [
4
1
2
] 

|𝐴| = 1200 ≠ 0 

 

Cofactors of the elements of A are 

 𝐴11 = 75, ⁡𝐴12 = 110, ⁡𝐴13 = 72 

𝐴21 = 150,  𝐴22 = −100,  𝐴23 = 0 

𝐴31 = 75,  𝐴32 = 30,  𝐴33 = −24 

 

𝑎𝑑𝑗𝐴 = [
75 150 75
110 −100 30
72 0 −24

] 

 

𝐴−1 =
𝑎𝑑𝑗𝐴

|𝐴|
=

1

1200
[
75 150 75
110 −100 30
72 0 −24

] 

 

𝑋 = 𝐴−1𝐵⁡=  
1

1200
[
75 150 75
110 −100 30
72 0 −24

] [
4
1
2
] 

=
1

1200
[
600
400
240

] =

[
 
 
 
 
1

2
1

3
1

5]
 
 
 
 

 

⸫x = 2, y = 3, z = 5 

 

 

 

 
1

2
 

 
1

2
 

 

 

 

 

 

 

2 

 

 

 
1

2
 

 

 

 

 

 

 

1 

 
1

2
 

 OR  

   

 

Sol

. 

|𝐴| = 1 + 𝑐𝑜𝑡2𝑥 = 𝑐𝑜𝑠𝑒𝑐2𝑥 

 

𝑎𝑑𝑗𝐴 = [
1 −𝑐𝑜𝑡𝑥

𝑐𝑜𝑡𝑥 1
] 

 

1

2
 

1
1

2
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𝐴−1 =
𝑎𝑑𝑗𝐴

|𝐴|
=

1

𝑐𝑜𝑠𝑒𝑐2𝑥
[

1 −𝑐𝑜𝑡𝑥
𝑐𝑜𝑡𝑥 1

] 

 

𝐴′ = [
1 −𝑐𝑜𝑡𝑥

𝑐𝑜𝑡𝑥 1
] 

 

𝐴′𝐴−1 =
1

𝑐𝑜𝑠𝑒𝑐2𝑥
[1 − 𝑐𝑜𝑡2𝑥 −2𝑐𝑜𝑡𝑥

2𝑐𝑜𝑡𝑥 1 − 𝑐𝑜𝑡2𝑥
] 

 

= [𝑠𝑖𝑛
2𝑥 − 𝑐𝑜𝑠2𝑥 −2𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑥

2𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑥 𝑠𝑖𝑛2𝑥 − 𝑐𝑜𝑠2𝑥
] 

 

= [
−𝑐𝑜𝑠2𝑥 −𝑠𝑖𝑛2𝑥
𝑠𝑖𝑛2𝑥 −𝑐𝑜𝑠2𝑥

] 

 

 

 

1 

 
1

2
 

 

 

 

 

 

 

 

1
1

2
 

 

 

36.   
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Sol

. 

 

(i) 𝑃(𝐸2) = 1 − 0.0000001 

 

= 0.9999999 

(ii) 𝑃(𝐴 𝐸1⁄ ) + 𝑃(𝐴 𝐸2⁄ ) =
95

100
+ 1 =

195

100
 

 

 

 

 

1 

1 

 

 (iii)(a) 𝑃(𝐴) = 𝑃(𝐸1) × 𝑃(𝐴 𝐸1⁄ ) + 𝑃(𝐸2) × 𝑃(𝐴 𝐸2⁄ ) 

 

=⁡
1

10000000
×

95

100
+

9999999

10000000
× 1 

 

=⁡
95+999999900

1000000000
⁡= 

999999995

1000000000
⁡ 

 

 

1 

 

 

 

 

1 

 

 

 OR  

 (iii)(b) 

 𝑃(𝐸2 𝐴⁄ ) =
𝑃(𝐸2)×𝑃(𝐴 𝐸2⁄ )

𝑃(𝐸1)×𝑃(𝐴 𝐸1⁄ )+𝑃(𝐸2)×𝑃(𝐴 𝐸2⁄ )
 

 

=

9999999
10000000
999999995
1000000000

=
999999900

999999995
 

 

 

1 

 

 

 

1 

   

37.  
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Sol

. 
(i) When V = 40 km/h, F = 36/5 ℓ/100km 

(ii)  
𝑑𝐹

𝑑𝑉
=

𝑉

250
−

1

4
 

 

(iii)(a)   
𝑑𝐹

𝑑𝑉
= 0 

⟹V = 62.5 km/h 

 
𝑑2𝐹

𝑑𝑉2
=

1

250
> 0 at V = 62.5 km/h 

 

Hence, F is minimum when V = 62.5 km/h 

 

 

1 

 

 

1 

 

 

 

 

1 
1

2
 

 
1

2
 

 

 OR 

 

 

 (iii) (b) 
𝑑𝐹

𝑑𝑉
= −0.01 
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⟹
𝑉

250
−

1

4
=

−1

100
 

⟹ 𝑉 = 60 km/h 

 

𝐹 =
602

500
−

60

4
+ 14 = 6.2 ℓ 100𝑘𝑚⁄  

 

Quantity of fuel required for 600 km 

= 6.2 × 6⁡ = 37.2 ℓ 

 

 

 

1 

 
1

2
 

 
1

2
 

38. 
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Sol

. 
(i)Constraints are 𝑥 + 2𝑦 ≥ 10 

𝑥 + 𝑦 ≥ 6 

3𝑥 + 𝑦 ≥ 8 

𝑥 ≥ 0 

𝑦 ≥ 0 

 

(ii) 

Corner points Value of Z = 16x + 20y 

A (10, 0) 160 

B (2, 4) 112 

C (1, 5) 116 

D (0, 8) 160 

 

The minimum cost is ₹112 

 

 

1
1

2
 

1

2
 

 

 

 

 

 

 

 

1
1

2
 

 
1

2
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