

Series: 1GEFH

SET~3

Q.P. Code 31/1/3 प्रश्न-पत्र कोड

रोल नं.				
Roll No.				

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें। Candidates must write the Q.P. Code on the title page of the answer-book.

	नोट		NOTE
(I)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 27 हैं।	(I)	Please check that this question paper contains 27 printed pages.
(II)	प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।	(II)	Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
(III)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में 39 प्रश्न हैं।	(III)	Please check that this question paper contains 39 questions.
(IV)	कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथा स्थान पर प्रश्न का क्रमांक अवश्य लिखें।	(IV)	Please write down the Serial Number of the question in the answer-book at the given place before attempting it.
(V)	इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।	(V)	15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

विज्ञान **SCIENCE**

निर्धारित समय : 3 घण्टे

Time allowed : 3 hours

अधिकतम अंक : 80

Maximum Marks: 80

सामान्य निर्देश :

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :

- (i) इस प्रश्न-पत्र में कुल **39** प्रश्न हैं। **सभी** प्रश्न **अनिवार्य** हैं।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित किया गया है **क, ख, ग, घ** एवं **ङ**।
- (iii) खण्ड क प्रश्न संख्या 1 से 20 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) खण्ड ख प्रश्न संख्या 21 से 26 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 2 अंकों का है। इन प्रश्नों के उत्तर 30 से 50 शब्दों में दिए जाने चाहिए।
- (v) **खण्ड ग** प्रश्न संख्या **27** से **33** तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न **3** अंकों का है। इन प्रश्नों के उत्तर **50** से **80** शब्दों में दिए जाने चाहिए।
- (vi) खण्ड घ प्रश्न संख्या 34 से 36 तक दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है। इन प्रश्नों के उत्तर 80 से 120 शब्दों में दिए जाने चाहिए।
- (vii) खण्ड ङ प्रश्न संख्या 37 से 39 तक 3 स्रोत-आधारित/प्रकरण-आधारित इकाइयों के मूल्यांकन के 4 अंकों के प्रश्न (उप-प्रश्नों सहित) हैं।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, कुछ खण्डों में आंतरिक विकल्प दिए गए हैं। इस प्रकार के प्रश्नों में केवल एक ही विकल्प का उत्तर दीजिए।

खण्ड क

प्रश्न संख्या 1 से 20 तक के प्रत्येक प्रश्न में दिए गए चार विकल्पों में से सबसे उचित विकल्प चुनिए और लिखिए। ग़लत उत्तर के लिए कोई ऋणात्मक अंकन नहीं है। 20×1=20

- 1. विद्युत-अपघटनी अपचयन प्रक्रिया द्वारा गलित क्लोराइडों से प्राप्त होने वाली धातुएँ हैं :
 - (A) गोल्ड और सिल्वर
 - (B) कैल्शियम और मैग्नीशियम
 - (C) ऐलुमिनियम और सिल्वर
 - (D) सोडियम और आयरन

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This question paper comprises **39** questions. **All** questions are **compulsory**.
- (ii) This question paper is divided into **five** sections **A**, **B**, **C**, **D** and **E**.
- (iii) **Section A** Questions No. 1 to 20 are Multiple Choice Questions. Each question carries 1 mark.
- (iv) Section B Questions No. 21 to 26 are Very Short Answer type questions. Each question carries 2 marks. Answer to these questions should be in the range of 30 to 50 words.
- (v) **Section C** Questions No. **27** to **33** are Short Answer type questions. Each question carries **3** marks. Answer to these questions should in the range of **50** to **80** words.
- (vi) **Section D** Questions No. **34** to **36** are Long Answer type questions. Each question carries **5** marks. Answer to these questions should be in the range of **80** to **120** words.
- (vii) **Section E** Questions No. **37** to **39** are of **3** source-based/case-based units of assessment carrying **4** marks each with sub-parts.
- (viii) There is no overall choice. However, an internal choice has been provided in some sections. Only one of the alternatives has to be attempted in such questions.

SECTION A

Select and write the most appropriate option out of the four options given for each of the questions no. 1 to 20. There is no negative marking for incorrect response. $20 \times 1 = 20$

- 1. The metals obtained from their molten chlorides by the process of electrolytic reduction are:
 - (A) Gold and silver
 - (B) Calcium and magnesium
 - (C) Aluminium and silver
 - (D) Sodium and iron

31/1/3 [P.T.O.]

2. नीचे दिए गए किस विकल्प में मैग्नीशियम ऑक्साइड बनना सही दिखाया गया है?

(D)
$$2\text{Mg} \times \longrightarrow \circlearrowleft \longrightarrow \left[\text{Mg}^{2+}\right]_2 \left[: \circlearrowleft :^{2-}\right]$$

- 3. दो तत्त्वों A और B के बीच अभिक्रिया से कोई यौगिक C बनता है । A इलेक्ट्रॉन खोता है तथा B इलेक्ट्रॉन ग्रहण करता है । यौगिक C निम्निलिखित में से कौन-सा एक गुण **नहीं** दर्शाएगा ?
 - (A) इसका गलनांक उच्च है।
 - (B) यह जल में अत्यधिक विलेय है।
 - (C) इसके विजातीय (विपरीत आवेशित) आयनों के बीच दुर्बल स्थिर-वैद्युत आकर्षण बल है।
 - (D) यह अपनी गलित अवस्था अथवा जलीय विलयन में विद्युत चालन करता है।
- 4. निम्नलिखित अभिक्रियाओं पर विचार कीजिए:
 - (i) तनु हाइड्रोक्लोरिक अम्ल, सोडियम हाइड्रॉक्साइड से अभिक्रिया करता है।
 - (ii) मैग्नीशियम ऑक्साइड, तनु हाइड्रोक्लोरिक अम्ल से अभिक्रिया करता है।
 - (iii) कार्बन डाइऑक्साइड, सोडियम हाइड्रॉक्साइड से अभिक्रिया करती है। यह पाया जाता है कि प्रत्येक प्रकरण में :
 - (A) लवण और जल बनता है।
 - (B) उदासीन लवण बनते हैं।
 - (C) हाइड्रोजन गैस बनती है।
 - (D) अम्लीय लवण बनते हैं।
- 5. दन्तवल्क (दन्त इनैमल) कैल्शियम हाइड्रॉक्सीएपेटाइट (कैल्शियम फॉस्फेट का क्रिस्टलीय रूप) से बना होता है। मुख में pH कितना होने पर इस रसायन का संक्षारण आरम्भ हो जाता है?
 - (A) 7

(B) 5

(C) 10

(D) 14

The formation of magnesium oxide is correctly shown in option: 2.

(A)
$$\operatorname{Mg} : \overset{\check{}}{\hookrightarrow} \overset{\check{}}{\circ} \overset{\check{}}{\circ} \overset{\check{}}{\circ} \longrightarrow \operatorname{Mg}^{2+} \left[\overset{\check{}}{\circ} \overset{\check{}}{\circ} \overset{\check{}}{\circ} \overset{2-}{\circ} \right]$$

(D)
$$2\text{Mg} \times \longrightarrow \text{O} :\longrightarrow \left[\text{Mg}^{2+}\right]_2 \left[\text{:O}^{2-}\right]$$

- Reaction between two elements A and B, forms a compound C. A loses 3. electrons and B gains electrons. Which one of the following properties will **not** be shown by compound C?
 - (A) It has high melting point.
 - (B) It is highly soluble in water.
 - (C) It has weak electrostatic forces of attraction between its oppositely charged ions.
 - (D) It conducts electricity in its molten state or aqueous solution.
- 4. Consider the following reactions:
 - (i) Dilute hydrochloric acid reacts with sodium hydroxide.
 - (ii) Magnesium oxide reacts with dilute hydrochloric acid.
 - (iii) Carbon dioxide reacts with sodium hydroxide.

It is found that in each case:

- (A) Salt and water is formed.
- Neutral salts are formed. (B)
- (C) Hydrogen gas is formed.
- (D) Acidic salts are formed.
- 5. Tooth enamel is made up of calcium hydroxyapatite (a crystalline form of calcium phosphate). This chemical starts corroding in the mouth when the pH is:
 - (A) 7

(B) 5

(C) 10 (D) 14

6.	वायु र्व	जे उपस्थिति में ऐलुमिनियम और मैग्नीशियम्	म के दहन	होने प	र बनने वाले उत्पाद क्रमश: हैं :
	(A)	$\mathrm{Al_3O_4}$ और $\mathrm{MgO_2}$		(B)	$\mathrm{Al}_2\mathrm{O}_3$ और MgO
	(C)	$\mathrm{Al_3O_4}$ और MgO		(D)	${ m Al}_2{ m O}_3$ और ${ m MgO}_2$
7.		ना विद्युत-अपघटन एक वियोजन (अपघटन ोडों पर मुक्त गैसों – हाइड्रोजन और ऑक्स			9
	(A)	8:1		(B)	2:1
	(C)	1:2		(D)	1:8
8.	निम्नि	लेखित ग्लूकोज़ के विखण्डन का पथ दर्शाय	ा गया है :	:	
	ग्लूकोः	ज $\xrightarrow{(a)}$ पायरुवेट + ऊर्जा $\xrightarrow{(b)}$	लैक्टिक	अम्ल -	+ ক্রর্जা
	स्थल '	a' और 'b' क्रमश: हैं :			
	(A)	माइटोकॉन्ड्रिया और ऑक्सीजन के अभा	व वाली	पेशीय र	कोशिकाएँ
	(B)	कोशिकाद्रव्य और ऑक्सीजन प्रचुर पेशी	य कोशि	काएँ	
	(C)	े कोशिकाद्रव्य और यीस्ट कोशिकाएँ			
	(D)	कोशिकाद्रव्य और ऑक्सीजन के अभाव	वाली पे	शीय क	ोशिकाएँ
9.		और हरे ($ m RRyy$) बीजों वाले मटर के पौधों के साथ संकरण कराया गया। $ m F_1$ संतति के			
	(A)	50% गोल और हरे	(B)	75%	🖟 झुर्रीदार और हरे
	(C)	100% गोल और पीले	(D)	75%	⁶ झुरींदार और पीले
10.	उभयि	लेंगी पुष्प के विषय में सही कथन है/हैं :			
	(i)	इनमें पुंकेसर और स्त्रीकेसर दोनों होते हैं।			
	(ii)	इनमें या तो पुंकेसर होता है अथवा स्त्रीके	सर होता	है।	
	(iii)	ये या तो स्वपरागण दर्शाते हैं अथवा परप	रागण दश	र्गिते हैं।	
	(iv)	ये अपने आप फल उत्पन्न नहीं कर सकते	1 हैं ।		
	(A)	केवल (i)	(B)	केवल	f (iv)
	(C)	(i) और (iii)	(D)	(i) 3	भौर (iv)

6.		products formed when Alumini ence of air respectively are :	ium ar	nd Ma	agnesium are burnt in the
	(A)	${ m Al}_3{ m O}_4$ and ${ m MgO}_2$		(B)	${ m Al}_2{ m O}_3$ and MgO
	(C)	${ m Al_3O_4}$ and MgO		(D)	${ m Al}_2{ m O}_3$ and ${ m MgO}_2$
7.		trolysis of water is a decon	_		
		: M _O) of hydrogen and oxyg	en gas	ses li	berated at the electrodes
		ng electrolysis of water is:		(D)	0 1
		8:1		, ,	2:1
	(C)	1:2		(D)	1:8
8.	The	breakdown of glucose has taken	the fo	llowi	ng pathway :
	Gluc	ose $\xrightarrow{(a)}$ Pyruvate + Energy	(b)	→ La	ctic acid + Energy
	The	sites 'a' and 'b' respectively are	:		
	(A)	Mitochondria and Oxygen def	ficient	musc	ele cells
	(B)	Cytoplasm and Oxygen rich n	nuscle	cells	
	(C)	Cytoplasm and Yeast cells			
	(D)	Cytoplasm and Oxygen defici	ent mu	scle	cells
9.	plan	ea plants with round and green ts having wrinkled and yellow plants of \mathbf{F}_1 generation will be :			_
	(A)	50% round and green	(B)	75%	wrinkled and green
	(C)	100% round and yellow	(D)	75%	wrinkled and yellow
10.	The	correct/true statement(s) for a b	oisexua	al flov	ver is/are :
	(i)	They possess both stamen and	d pistil	l.	
	(ii)	They possess either stamen or	r pistil	.•	
	(iii)	They exhibit either self-pollin	ation (or cro	ess-pollination.
	(iv)	They cannot produce fruits or	n their	own.	
	(A)	(i) only	(B)	(iv)	only

31/1/3 [P.T.O.]

(D)

(i) and (iv)

(i) and (iii)

(C)

11.	_	न-सा पादप हॉर्मोन है जिसकी सांद्रता, प्रर में वृद्धि के लिए उद्दीपित करती है ?	ोह के प्रव	काश से दूर वाले भाग की कोशिकाओं को
	(A)	साइटोकाइनिन		
	(B)	जिब्बेरेलिन		
	, ,	ऐड्रिनलीन		
	(D)	ऑक्सिन		
12.	मुँह में व	लार का कम मात्रा में स्नावित होना किस परि	वर्तन को	प्रभावित करता है ?
	(A)	प्रोटीनों से ऐमीनो अम्ल		
	(B)	वसा से वसीय अम्ल और ग्लिसरॉल		
	(C)	स्टार्च से सरल शर्करा		
	(D)	शर्करा से ऐल्कोहॉल		
13.		स्थलीय पारितंत्र में हरे पादपों की पत्तियों ह कर्जा में परिवर्तित नहीं होता है ?	रारा प्राप्त	सौर ऊर्जा का लगभग कितने प्रतिशत भाग
	(A)	1%	(B)	10%
	(C)	90%	(D)	99%
14.	निम्नि	निखत में से कौन-कौन से समूह कोई आहार	:श्रृंखला <i>ः</i>	नहीं बनाते हैं ?
	(i)	भेड़िया, खरगोश, घास, शेर	•	
	(ii)	प्लवक, मानव, टिड्डा, मछली		
	(iii)	`		
	(iv)	घास, सर्प, भेड़िया, बाघ		
	(A)	(i) और (iv)	(B)	(i) और (iii)
		(ii) और (iii)	(D)	
15.	वह कौ	न-सी परिघटना है जो धुएँ से भरे कमरे में वि	केसी पतर	ने छिद्र से सूर्य के प्रकाश पुंज के प्रवेश करने
		के कणों को दृष्टिगोचर बनाने के लिए उत्तर		• •
	(A)	प्रकाश का प्रकीर्णन		
	(B)	प्रकाश का परिक्षेपण		
	(C)	प्रकाश का परावर्तन		
	(D)	प्रकाश का आन्तरिक परावर्तन		

11.		plant hormone whose concener on the side of the shoot which		a stimulates the cells to grow ay from light is:
	(A)	Cytokinins		
	(B)	Gibberellins		
	(C)	Adrenaline		
	(D)	Auxins		
12.	Secre	etion of less saliva in mouth wi	ll effec	t the conversion of :
	(A)	proteins into amino acids		
	(B)	fats into fatty acids and glyce	erol	
	(C)	starch into simple sugars		
	(D)	sugars into alcohol		
13.	-	percentage of solar energy whice eaves of green plants in a terre		ot converted into food energy by ecosystem is about:
	(A)	1%	(B)	10%
	(C)	90%	(D)	99%
14.	Whic	ch of the following groups do no	t cons	titute a food chain ?
	(i)	Wolf, rabbit, grass, lion		
	(ii)	Plankton, man, grasshopper,	fish	
	(iii)	Hawk, grass, snake, grasshop	pper, fr	og
	(iv)	Grass, snake, wolf, tiger		
	(A)	(i) and (iv)	(B)	(i) and (iii)
	(C)	(ii) and (iii)	(D)	(ii) and (iv)
15.	The	phenomenon responsible for	makin	ng the smoke particles visible
	wher	n a beam of sunlight enters a	smoke	e filled room through a narrow
	hole	is:		
	(A)	scattering of light		
	(B)	dispersion of light		
	(C)	reflection of light		
	(D)	internal reflection of light		

- 16. दर्पण 'X' सूर्य के प्रकाश को सौर भट्टी में सांद्रित करता है तथा दर्पण 'Y' वाहनों के पार्श्व में ड्राइवरों को पीछे के ट्रैफिक को देखने के लिए लगाया जाता है। इन दो दर्पणों के विषय में निम्नलिखित में से कौन-से कथन सही हैं?
 - (i) दर्पण 'X' द्वारा बना प्रतिबिम्ब वास्तिवक, छोटा और इसके फोकस पर होता है।
 - (ii) दर्पण 'Y' द्वारा बना प्रतिबिम्ब आभासी, छोटा और सीधा होता है।
 - (iii) दर्पण 'X' द्वारा बना प्रतिबिम्ब आभासी, छोटा और सीधा होता है।
 - (iv) दर्पण 'Y' द्वारा बना प्रतिबिम्ब वास्तविक, छोटा और इसके फोकस पर होता है।
 - (A) (i) और (ii)

(B) (ii) और (iii)

(C) (iii) और (iv)

(D) (i) और (iv)

प्रश्न संख्या 17 से 20 के लिए, दो कथन दिए गए हैं – जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए।

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या **नहीं** करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (D) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।
- 17. अभिकथन (A): 1980 से वायुमंडल में ओज़ोन की मात्रा में तीव्रता से गिरावट आने लगी। कारण (R): ऑक्सीजन के परमाणु, ऑक्सीजन के अणुओं से संयुक्त होकर ओज़ोन बनाते हैं।
- 18. अभिकथन (A): दो चुम्बकीय क्षेत्र रेखाएँ परस्पर एक-दूसरे का प्रतिच्छेदन नहीं करती हैं। कारण (R): दिक्सूचक सुई दो चुम्बकीय क्षेत्र रेखाओं के प्रतिच्छेदन बिन्दु पर दो दिशाओं की ओर संकेत नहीं कर सकती है।
- 19. अभिकथन (A): मानव संतान में मानवों के सभी आधारभूत लक्षण होते हैं। कारण (R): मानव संतान बहुत कम विभिन्नताएँ दर्शाते हुए तथ्यत: अपने माता-पिता जैसी ही दिखाई देती है।
- 20. अभिकथन (A): अपघटन अभिक्रियाएँ सामान्यत: ऊष्माशोषी अभिक्रियाएँ होती हैं।

 कारण (R): कार्बनिक पदार्थ का कम्पोस्ट में अपघटन ऊष्माक्षेपी प्रक्रिया/अभिक्रिया है।

- 16. Mirror 'X' is used to concentrate sunlight in solar furnace and Mirror 'Y' is fitted on the side of the vehicle to see the traffic behind the driver. Which of the following statements are true for the two mirrors?
 - (i) The image formed by mirror 'X' is real, diminished and at its focus.
 - (ii) The image formed by mirror 'Y' is virtual, diminished and erect.
 - (iii) The image formed by mirror 'X' is virtual, diminished and erect.
 - (iv) The image formed by mirror 'Y' is real, diminished and at its focus.
 - (A) (i) and (ii)

(B) (ii) and (iii)

(C) (iii) and (iv)

(D) (i) and (iv)

For Questions number 17 to 20, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- **17.** Assertion (A): The amount of ozone in the atmosphere began to drop sharply in the 1980s.
 - Reason(R): The oxygen atoms combine with molecular oxygen to form ozone.
- **18.** Assertion (A): No two magnetic field lines are found to cross each other.
 - *Reason (R)*: The compass needle cannot point towards two directions at the point of intersection of two magnetic field lines.
- **19.** Assertion (A): A human child bears all the basic features of human beings.
 - Reason (R): It looks exactly like its parents, showing very little variations.
- **20.** Assertion (A): Decomposition reactions are generally endothermic reactions.
 - *Reason (R)*: Decomposition of organic matter into compost is an exothermic process.

खण्ड ख

प्रश्न संख्या 21 से 26 अति लघु-उत्तरीय प्रकार के प्रश्न हैं।

21. कोई बिम्ब 15 cm फोकस दूरी के किसी अवतल दर्पण के सामने 10 cm की दूरी पर स्थित है। दर्पण सूत्र का उपयोग करके इस दर्पण द्वारा बनने वाले प्रतिबिम्ब की स्थिति निर्धारित कीजिए।

2

22. (क) दो लैम्पों A और B के अनुमतांक क्रमश: 50~W; 220~V और 25~W; 220~V हैं। इन दोनों लैम्पों के प्रतिरोधों का अनुपात (अर्थात् R_A : R_B) ज्ञात कीजिए।

2

अथवा

(ख) किसी धारा के प्रवाहित होने के कारण किसी $4~\Omega$ के प्रतिरोधक द्वारा प्रति सेकण्ड उत्पन्न ऊष्मा 400~जूल है। प्रतिरोधक के सिरों पर विभवान्तर परिकलित कीजिए।

2

23. नामांकित आरेख खींचकर *हाइड्रा* में मुकुलन के विभिन्न चरण दर्शाइए।

2

24. (क) रुधिर की हानि कम-से-कम होने के अतिरिक्त किसी वाहिनी से रक्तस्राव को अवरुद्ध करना (रोकना) क्यों अनिवार्य है ? रुधिर के उस संघटक का नाम लिखिए जो इस प्रक्रिया में सहायता करता है तथा उल्लेख कीजिए कि इस संघटक द्वारा इस कार्य का सम्पादन किस प्रकार किया जाता है।

2

अथवा

- (ख) (i) पादपों की वहन तंत्र प्रणाली जन्तुओं की अपेक्षा धीमी होती है। कारण दीजिए।
 - (ii) पादपों में पदार्थों के स्थानान्तरण/परिवहन में फ़्लोएम की भूमिका का उल्लेख कीजिए।

2

2

25. कोई छात्र अपने विद्यालय की प्रयोगशाला में निम्नलिखित प्रयोग करता है।

ऐसे दो प्रेक्षणों की सूची बनाइए जो यह पुष्टि करते हैं कि इस प्रयोग में कोई रासायनिक परिवर्तन हुआ है।

SECTION B

Questions no. 21 to 26 are Very Short Answer Type questions.

21. An object is placed at a distance of 10 cm in front of a concave mirror of focal length 15 cm. Use mirror formula to determine the position of the image formed by this mirror.

2

22. (a) Consider two lamps A and B of rating 50 W; 220 V and 25 W; 220 V respectively. Find the ratio of the resistances of the two lamps (i.e. $R_A:R_B$).

2

OR.

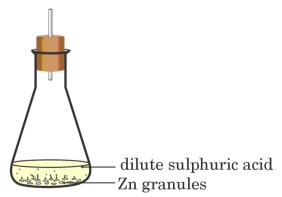
(b) Heat produced per second due to a current in a resistor of 4 Ω is 400 joules. Calculate the potential difference across the resistor.

2

23. Draw labelled diagrams to show different stages of budding in Hydra.

2

24. (a) Besides minimising the loss of blood, why is it essential to plug any leak in a blood vessel? Name the component of blood which helps in this process and state how this component perform this function.


2

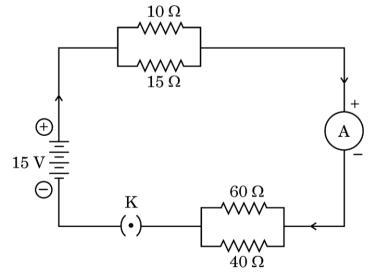
\mathbf{OR}

- (b) (i) The transport system in plants is relatively slower than in animals. Give reasons.
 - (ii) State the role of phloem in the transport of materials in plants.

2

25. A student performs the following experiment in his school laboratory.

List two observations to justify that in this experiment a chemical change has taken place.



- 26. निम्नलिखित कथनों को रासायनिक समीकरणों के रूप में परिवर्तित कर इन्हें संतुलित कीजिए:
 - (क) नाइट्रिक अम्ल, कैल्शियम हाइड्रॉक्साइड से अभिक्रिया करके कैल्शियम नाइट्रेट और जल बनाता है।
 - (ख) सोडियम क्लोराइड, सिल्वर नाइट्रेट से अभिक्रिया करके सिल्वर क्लोराइड और सोडियम नाइट्रेट बनाता है।

खण्ड ग

प्रश्न संख्या 27 से 33 लघु-उत्तरीय प्रकार के प्रश्न हैं।

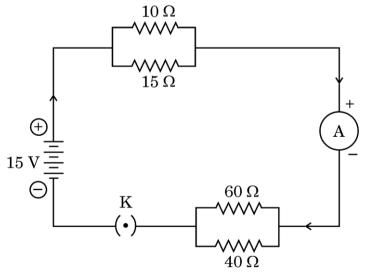
- 27. (क) किसी विद्युत-क्षेत्र में दो बिन्दुओं के बीच एक वोल्ट विभवान्तर की परिभाषा लिखिए।
 - (ख) किसी विद्युत परिपथ का व्यवस्था आरेख खींचिए जिसमें 1.5~V का एक सेल, $5~\Omega$ और $10~\Omega$ के प्रतिरोधक और एक प्लग कुंजी, सभी श्रेणीक्रम में संयोजित हैं। कुंजी बंद होने पर सेल से ली गई धारा परिकलित कीजिए।
- 28. निम्नलिखित विद्युत परिपथ पर विचार कीजिए :

निम्नलिखित के मान परिकलित कीजिए:

- (क) परिपथ का कुल प्रतिरोध
- (ख) विद्युत स्रोत से ली गई कुल धारा
- (η) $10~\Omega$ और $15~\Omega~$ प्रतिरोधकों के पार्श्वक्रम संयोजन के सिरों पर विभवान्तर

3

2



- **26.** Translate the following statements into chemical equations and then balance them:
 - (a) Nitric acid reacts with calcium hydroxide to form calcium nitrate and water.
 - (b) Sodium chloride reacts with silver nitrate to form silver chloride and sodium nitrate.

SECTION C

Questions no. 27 to 33 are Short Answer Type questions.

- **27.** (a) Define one volt potential difference between two points in an electric field.
 - (b) Draw a schematic diagram of an electric circuit of a cell of 1.5 V, 5Ω and 10Ω resistor and a plug key, all connected in series. Calculate the current drawn from the cell when the key is closed.
- **28.** Consider the following electric circuit :

Calculate the values of the following:

- (a) The total resistance of the circuit
- (b) The total current drawn from the source
- (c) Potential difference across the parallel combination of 10 Ω and 15 Ω resistors

3

2

किसी उत्तल दर्पण द्वारा बनने वाले प्रतिबिम्ब की प्रकृति, स्थित और सापेक्ष साइज़ को दर्शाने के लिए 29. उस प्रकरण में किरण आरेख खींचिए जिसमें बिम्ब (i) अनन्त पर स्थित है तथा (ii) दर्पण के ध्रव P और अनन्त के बीच स्थित है। 3 मानवों में कितने गुणसूत्र उपस्थित होते हैं ? इनमें से कितने लिंग गुणसूत्र होते हैं ? 30. (क) व्याख्या कीजिए कि लैंगिक जनन करने वाले जीवों की संतित में गुणसूत्रों की संख्या का (ख) अन्रक्षण किस प्रकार होता है। 3 जब कोई व्यक्ति विषम परिस्थितियों में होता है तो उसके रुधिर में कोई हॉर्मोन 'X' स्नावित होता है। 31. हॉर्मोन 'X' और इसे स्नावित करने वाली ग्रंथि को पहचानिए। (क) विषम/आकस्मिक/आपातकालीन परिस्थितियों का सामना करने में इसकी भूमिका की (ख) व्याख्या कीजिए। 3 किसी क्रियाकलाप की सहायता से उन परिस्थितियों की व्याख्या कीजिए जिनमें लोहे 32. (क) (आयरन) की वस्तुओं पर जंग लगती है। 3 अथवा उन दो धातुओं के नाम लिखिए जो ठंडे जल के साथ तीक्ष्णता से अभिक्रिया करती (i) (ख) हैं। उन तीन प्रेक्षणों की सूची बनाइए जिन्हें कोई छात्र इन धातुओं को जल से भरे बीकर में डालने पर नोट करेगा। इन धातुओं की जल के साथ अभिक्रिया में निकलने वाली गैस (यदि कोई है) की (ii) पहचान के लिए कोई परीक्षण लिखिए। 3 ''सक्रियता श्रेणी में मध्य की धातुओं के निष्कर्षण में भी विस्थापन अभिक्रियाओं की मुख्य 33. (क) भृमिका होती है।'' दो उदाहरण देकर इस कथन की पृष्टि कीजिए। सक्रियता श्रेणी में सबसे ऊपर स्थित धातुओं को उनके ऑक्साइडों को कार्बन द्वारा अपचयित (ख)

करके प्राप्त क्यों नहीं किया जा सकता है ?

29.	imag	v ray diagrams to show the nature, position and relative size of the reference formed by a convex mirror when the object is placed (i) at infinity (ii) between infinity and pole P of the mirror.	3
30.	(a)	How many chromosomes are present in human beings? Out of these how many are sex chromosomes?	
	(b)	Explain how, in sexually reproducing organisms, the number of chromosomes in the progeny is maintained.	3
31.	A ho	rmone 'X' is secreted in blood when a person is under scary situation.	
	(a)	Identify the hormone 'X' and the gland that secretes it.	
	(b)	Explain its role in dealing with scary or emergency situations.	3
32.	(a)	With the help of an activity, explain the conditions under which iron articles get rusted.	3
		\mathbf{OR}	
	(b)	(i) Name two metals which react violently with cold water. List any three observations which a student notes when these metal are dropped in a beaker containing water.	
		(ii) Write a test to identify the gas evolved (if any) during the reaction of these metals with water.	3
33.	(a)	"Displacement reactions also play a key role in extracting metals in the middle of the reactivity series." Justify this statement with two examples.	
	(b)	Why can metals high up in the reactivity series not be obtained by reduction of their oxides by carbon?	3

खण्ड घ

प्रश्न संख्या 34 से 36 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं।

- **34.** (क) (i) किसी लेंस 'X' की क्षमता -2.5 D है। इस लेंस का नाम लिखिए और इसकी फोकस दूरी cm में निर्धारित कीजिए। नेत्र चिकित्सक किस दृष्टि दोष के संशोधन के लिए इस प्रकार के लेंस को संशोधक लेंस के रूप में निर्धारित करते हैं?
 - (ii) "किसी लेंस के लिए आवर्धन 'm' का मान 2 है।" नई कार्तीय चिह्न परिपाटी का उपयोग करते हुए और यह मानते हुए कि कोई बिम्ब इस लेंस के प्रकाशिक केन्द्र से $20~{\rm cm}$ की दूरी पर है, निम्नलिखित का उल्लेख कीजिए:
 - (I) बनने वाले प्रतिबिम्ब की प्रकृति;
 - (II) बिम्ब के साइज़ की तुलना में प्रतिबिम्ब का साइज़;
 - (III) प्रतिबिम्ब की स्थिति, तथा
 - (IV) प्रतिबिम्ब की ऊँचाई का चिह्न।
 - (iii) दो लेंसों A और B की फोकस दूरी के संख्यात्मक मान क्रमश: 10 cm और 20 cm हैं। इन दोनों में से कौन-सा लेंस अभिसारिता/अपसारिता की उच्चतर कोटि दर्शाएगा ? अपने उत्तर की कारण सहित पृष्टि कीजिए।

अथवा

- (ख) (i) किसी काँच के आयताकार स्लैब से प्रकाश की किसी किरण का अपवर्तित होना दर्शाने के लिए किरण आरेख खींचिए जबकि प्रकाश किरण वायु से काँच में तिर्यकत: आपतन कर रही है।
 - (ii) प्रकाश के अपवर्तन का स्नेल का नियम लिखिए।
 - (iii) (I) बिम्ब दूरी तथा (II) आवर्धन के आधार पर किसी उत्तल लेंस और किसी अवतल लेंस द्वारा बने आभासी प्रतिबिम्बों के बीच विभेदन कीजिए।

SECTION D

Questions no. 34 to 36 are Long Answer Type questions.

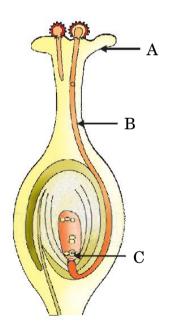
- **34.** (a) (i) The power of a lens 'X' is -2.5 D. Name the lens and determine its focal length in cm. For which eye defect of vision will an optician prescribe this type of lens as a corrective lens?
 - (ii) "The value of magnification 'm' for a lens is -2." Using new Cartesian Sign Convention and considering that an object is placed at a distance of 20 cm from the optical centre of this lens, state:
 - (I) the nature of the image formed;
 - (II) size of the image compared to the size of the object;
 - (III) position of the image, and
 - (IV) sign of the height of the image.
 - (iii) The numerical values of the focal lengths of two lenses A and B are 10 cm and 20 cm respectively. Which one of the two will show higher degree of convergence/divergence? Give reason to justify your answer.

 \mathbf{OR}

- (b) (i) Draw a ray diagram to show the refraction of a ray of light through a rectangular glass slab when it falls obliquely from air into glass.
 - (ii) State Snell's law of refraction of light.
 - (iii) Differentiate between the virtual images formed by a convex lens and a concave lens on the basis of:
 - (I) object distance, and
 - (II) magnification.

31/1/3

5

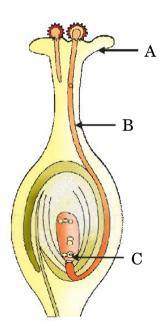

- **35.** (क) (i) मानव मादा जनन तंत्र के निम्नलिखित भागों के कार्य लिखिए:
 - (I) अण्डाशय
 - (II) अंडवाहिका (फेलोपियन ट्यूब)
 - (III) गर्भाशय
 - (ii) पुरुषों (मानव नरों) द्वारा उपयोग की जाने वाली दो गर्भनिरोधक विधियों का संक्षेप में उल्लेख कीजिए।

5

5

अथवा

- (ख) (i) स्वपरागण और परपरागण के बीच विभेदन कीजिए।
 - (ii) नीचे दिए गए आरेख में A, B और C की पहचान कीजिए और प्रत्येक भाग का एक कार्य लिखिए।


- 36. (क) (i) क्लोरीन के अणु की इलेक्ट्रॉन-बिन्दु संरचना खींचिए।
 (क्लोरीन का परमाणु क्रमांक = 17)
 - (ii) क्या होता है जब क्लोरीन सूर्य के प्रकाश में मेथैन से अभिक्रिया करती है ? इस अभिक्रिया का नाम लिखिए।

- **35.** (a) (i) Write the functions of the following parts of human female reproductive system:
 - (I) Ovary
 - (II) Fallopian tube
 - (III) Uterus
 - (ii) State briefly two contraceptive methods used by human males.

OR

- (b) (i) Differentiate between self-pollination and cross-pollination.
 - (ii) Identify A, B and C in the diagram given below and write one function of each.

- **36.** (a) (i) Draw electron dot structure of chlorine molecule. (Atomic Number of Chlorine = 17)
 - (ii) What happens when chlorine reacts with methane in the presence of sunlight? Write the name of the reaction.

31/1/3

5

- (iii) ऐल्कोहॉलों को अम्लों में परिवर्तित करने में उपयोग किए जाने वाले दो ऑक्सीकारकों के नाम लिखिए।
- (iv) सहसंयोजी यौगिकों और आयनिक यौगिकों के गुणों के बीच चार अन्तरों की सूची बनाइए।

अथवा

- (ख) (i) कारण दीजिए कि कार्बन मुख्यत: सहसंयोजी आबन्ध द्वारा ही यौगिक क्यों बनाता है।
 - (ii) सहसंयोजी यौगिकों के गलनांक और क्वथनांक निम्न क्यों होते हैं ?
 - (iii) निम्नलिखित के लिए कारण दीजिए :
 - I. सहसंयोजी यौगिक विद्युत के कुचालक होते हैं।
 - II. कार्बन श्रृंखलन दर्शाता है।

खण्ड ङ

निम्नलिखित प्रश्न स्रोत-आधारित/केस-आधारित प्रश्न हैं। केस को सावधानीपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए।

- 37. हम अपने घरों में विद्युत शक्ति की आपूर्ति मुख्य तारों, जिसे मेन्स भी कहते हैं, से प्राप्त करते हैं। ये मुख्य तार या तो धरती पर लगे विद्युत खम्बों के सहारे अथवा भूमिगत केबलों द्वारा हमारे घरों तक पहुँचते हैं। हमारे देश में इस आपूर्ति के दो तारों (विद्युन्मय तार तथा उदासीन तार) के बीच 220 V का विभवान्तर होता है।
 - (क) हमारे घरों को आने वाली आपूर्ति जिन लाइन तारों द्वारा होती है उनके विद्युतरोधी आवरणों के रंग लिखिए।
 - (ख) 220~V के किसी विद्युत परिपथ का धारा अनुमतांक क्या होना चाहिए कि उस परिपथ पर 1~kW शक्ति अनुमतांक की विद्युत इस्तरी का प्रचालन किया जा सके ?

1

1

5

- (iii) Name the two oxidising agents used for the conversion of alcohols to acids.
- (iv) List four differences in properties between covalent compounds and ionic compounds.

OR

- (b) (i) Give reason why carbon forms compounds mainly by covalent bonding.
 - (ii) Why do covalent compounds have low melting and boiling points.
 - (iii) Give reason for the following:
 - I. Covalent compounds are bad conductors of electricity.
 - II. Carbon shows catenation.

SECTION E

The following questions are Source-based/Case-based questions. Read the case carefully and answer the questions that follow.

- 37. In our homes, we receive the supply of electric power through a main supply also called mains, either supported through overhead electric poles or by underground cables. In our country the potential difference between the two wires (live wire and neutral wire) of this supply is 220 V.
 - (a) Write the colours of the insulation covers of the line wires through which supply comes to our homes.
 - (b) What should be the current rating of the electric circuit (220 V) so that an electric iron of 1 kW power rating can be operated?

5

1

1

(ग) (i) भूसम्पर्क तार का क्या कार्य है ? विद्युत इस्तरी जैसे घरेलू विद्युत साधित्रों में भूसम्पर्क तार के महत्त्व का उल्लेख कीजिए।

2

अथवा

(ग) (ii) विद्युत से होने वाली दुर्घटनाओं से बचाव के लिए ली जाने वाली दो सावधानियों की सूची बनाइए। उल्लेख कीजिए कि ये सावधानियाँ किस प्रकार परिपथ/साधित्र को संभावित क्षति से बचाती हैं।

2

- 38. समुद्री जल में कई प्रकार के लवण घुले होते हैं। साधारण नमक को इन लवणों से पृथक किया जाता है। विश्व के कई भागों में भी ठोस लवण का निक्षेप होता है। बड़े आकार के यह किस्टल प्रायः अपद्रव्यों (अशुद्धियों) के कारण भूरे रंग के होते हैं। इसे खनिज नमक कहते हैं। इसका खनन भी कोयले की भाँति होता है। साधारण नमक दैनिक जीवन में उपयोग होने वाले रसायनों के लिए एक महत्त्वपूर्ण कच्ची सामग्री है।
 - (क) लवण-जल (ब्राइन) के विद्युत-अपघटन से उत्पन्न उत्पादों को दर्शाने के लिए संतुलित रासायनिक समीकरण लिखिए।

1

(ख) लवण-जल (ब्राइन) के विद्युत-अपघटन से प्राप्त किसी भी एक उत्पाद के दो उपयोगों की सूची बनाइए।

1

(ग) (i) किसी दुर्बल असंक्षारक क्षारीय लवण 'A' का उपयोग खाने को शीघ्रता से पकाने में किया जाता है। इसे गर्म करने पर कोई यौगिक 'B' बनता है जिसका उपयोग जल की स्थायी कठोरता को दूर करने में किया जाता है। A और B को पहचानिए तथा A को गर्म करने पर होने वाली अभिक्रिया का समीकरण भी लिखए।

2

अथवा

(ग) (ii) क्रिस्टलन के जल की परिभाषा लिखिए। उन दो लवणों का उदाहरण दीजिए जिनमें क्रिस्टलन का जल होता है।

(c) (i) What is the function of the earth wire? State the advantage of the earth wire in domestic electric appliances such as electric iron.

2

OR

(c) (ii) List two precautions to be taken to avoid electrical accidents.

State how these precautions prevent possible damage to the circuit/appliance.

2

- 38. Seawater contains many salts dissolved in it. Common salt is separated from these salts. Deposits of solid salt are also found in several parts of the world. These large crystals are often brown due to impurities. This is called rock salt and is mined like coal. The common salt is an important raw material for chemicals of daily use.
 - Write balanced chemical equations to show the products formed during electrolysis of brine.

1

(b) List two uses of any one product obtained during electrolysis of brine.

1

(c) (i) A mild non-corrosive basic salt 'A', used for faster cooking, is strongly heated to produce a compound 'B', that is used for removing permanent hardness of water. Identify A and B and also write the equation for the reaction that occurs when A is heated.

2

OR

(c) (ii) Define water of crystallisation. Give two examples of salts that have water of crystallisation.

2

(a)

- 39. सभी जीवों का अनुरक्षण कार्य निरन्तर होना चाहिए। यह उस समय भी चलते रहना चाहिए जब वे कोई विशेष कार्य नहीं कर रहे होते हैं। जब हम सो रहे हों अथवा अपनी कक्षा में बैठे होते हैं, उस समय भी यह अनुरक्षण का कार्य चलता रहना चाहिए। कोशिकाओं और ऊतकों की क्षति और टूट-फूट को रोकने तथा अनुरक्षण प्रक्रियाओं के लिए ऊर्जा की आवश्यकता होती है। यह ऊर्जा एकल जीव के शरीर को स्वपोषियों, जिन्हें उत्पादक कहते हैं, से प्राप्त होती है।
 - (क) उस प्रक्रिया का नाम और परिभाषा लिखिए जिसके द्वारा हरे पादप भोजन निर्मित करते हैं।

1

2

2

- (ख) उपर्युक्त प्रक्रिया में होने वाली अभिक्रिया का रासायनिक समीकरण लिखिए।
- (ग) (i) मरुद्भिद (मरुस्थली) पौधों द्वारा भोजन के संश्लेषण के समय होने वाली घटनाओं का उचित अनुक्रम में उल्लेख कीजिए।

अथवा

(ग) (ii) कारण सिहत व्याख्या कीजिए कि (I) घटा वाले (मेघाच्छन्न) मौसम में, तथा
(II) धूल द्वारा रंध्रों को बंद कर दिए जाने पर हरे पादपों द्वारा भोजन निर्माण करने की
दर पर क्या प्रभाव पड़ता है।

31/1/3

- 39. The maintenance functions of all living organisms must go on even when they are not doing anything particular. Even when we are just sitting in a class or even asleep, this maintenance job has to go on. These maintenance processes require energy to prevent damage and break-down of cells and tissues, which is obtained by the individual organism from the food prepared by the autotrophs, called producers.
 - (a) Name and define the process by which green plants prepare food.

1

1

2

2

(b) Write chemical equation involved in the above process.

(c) (i) State in proper sequence the events that occur in synthesis of food by desert plants.

OR

- (c) (ii) Explain giving reasons what happens to the rate at which the green plants will prepare food
 - (I) during cloudy weather, and
 - (II) when stomata get blocked due to dust.

31/1/3

Marking Scheme Strictly Confidential

(For Internal and Restricted use only)

Secondary School Examination, 2025 SUBJECT: SCIENCE (Q.P. CODE 31/1/3)

Gen	eral Instructions: -
	You are aware that evaluation is the most important process in the actual and correct
	assessment of the candidates. A small mistake in evaluation may lead to serious problems
1	which may affect the future of the candidates, education system and teaching profession.
_	To avoid mistakes, it is requested that before starting evaluation, you must read and
	understand the spot evaluation guidelines carefully.
	"Evaluation policy is a confidential policy as it is related to the confidentiality of the
	examinations conducted, Evaluation done and several other aspects. Its leakage to
2	public in any manner could lead to derailment of the examination system and affect
-	the life and future of millions of candidates. Sharing this policy/document to anyone,
	publishing in any magazine and printing in Newspaper/Website, etc. may invite action
	under various rules of the Board and IPC."
	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not
	be done according to one's own interpretation or any other consideration. Marking Scheme
3	should be strictly adhered to and religiously followed. However, while evaluating,
	answers which are based on latest information or knowledge and/or are innovative,
	they may be assessed for their correctness otherwise and due marks be awarded to
	them. In class-X, while evaluating two competency-based questions, please try to
	understand given answer and even if reply is not from marking scheme but correct
	competency is enumerated by the candidate, due marks should be awarded
	The Marking Scheme carries only suggested value points for the answers.
	The manning sentence court of suggestion value points for the union class
4	These are in the nature of Guidelines only and do not constitute the complete answer. The
-	students can have their own expression and if the expression is correct, the due marks
	should be awarded accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by each
	evaluator on the first day, to ensure that evaluation has been carried out as per the
	instructions given in the Marking Scheme. If there is any variation, the same should be
	zero after deliberation and discussion. The remaining answer books meant for evaluation
	shall be given only after ensuring that there is no significant variation in the marking of
	individual evaluators.
6	Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer CROSS 'X' be
	marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that
	answer is correct and no marks are awarded. This is most common mistake which
	evaluators are committing.
7	If a question has parts, please award marks on the right-hand side for each part. Marks
,	awarded for different parts of the question should then be totaled up and written in the left-
	hand margin and encircled. This may be followed strictly.
8	If a question does not have any parts, marks must be awarded in the left-hand margin and
O	encircled. This may also be followed strictly.
9	If a student has attempted an extra question, answer of the question deserving more marks
,	should be retained and the other answer scored out with a note "Extra Question".
10	
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only
11	Once. A full scale of montes 90 (around a 90/70/60/50/40/20 montes as sixon in Oxystian
11	A full scale of marks 80 (example 0 to 80/70/60/50/40/30 marks as given in Question
10	Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours
	every day and evaluate 20 answer books per day in main subjects and 25 answer books per

Page **1** of **11** X_086_31/1/3

	day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
13	Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
	Leaving answer or part thereof unassessed in an answer book.
	Giving more marks for an answer than assigned to it.
	Wrong totaling of marks awarded on an answer.
	Wrong transfer of marks from the inside pages of the answer book to the title page.
	Wrong question wise totaling on the title page.
	 Wrong totaling of marks of the two columns on the title page.
	Wrong grand total.
	 Marks in words and figures not tallying/not same.
	 Wrong transfer of marks from the answer book to online award list.
	Answers marked as correct, but marks not awarded. (Ensure that the right tick mark
	is correctly and clearly indicated. It should merely be a line. Same is with the X for
	incorrect answer.)
	Half or a part of answer marked correct and the rest as wrong, but no marks
4.4	awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
15	Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and
	judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines
	for Spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to
	the title page, correctly totaled and written in figures and words.
18.	The candidates are entitled to obtain photocopy of the Answer Book on request on
	payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head
	Examiners are once again reminded that they must ensure that evaluation is carried out
	strictly as per value points for each answer as given in the Marking Scheme.

Page **2** of **11** X_086_31/1/3

SECONDARY SCHOOL EXAMINATION, 2025 MARKING SCHEME

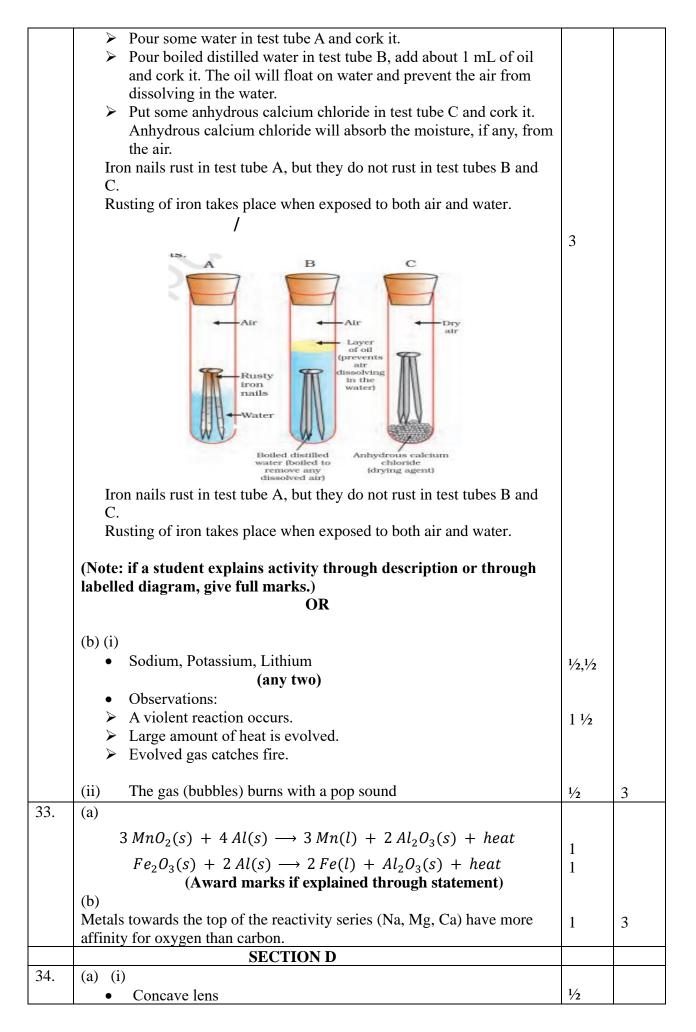
CLASS: X [SCIENCE (Subject Code-086)]

[Paper Code: 31/1/3]

Maximum Marks: 80

Q.	EXPECTED ANSWERS / VALUE POINTS	Marks	Total
No.			Marks
	SECTION A	1	1
1.	B / Calcium and Magnesium	1	1
2.	$Mg: \bigcap_{\times \times}^{\times \times} \longrightarrow Mg^{2+} \left[: \overset{\times \times}{\underset{\times \times}{\circ}} ^{2-} \right]$	1	1
3.	C / It has weak electrostatic forces of attraction between its oppositely charged ions.	1	1
4.	A / Salt and water is formed	1	1
5.	B /5	1	1
6.	B / Al ₂ O ₃ and MgO	1	1
7.	D/1:8	1	1
8.	D / Cytoplasm and Oxygen deficient muscle cells.	1	1
9.	C / 100% round and yellow	1	1
10.	C / (i) and (iii)	1	1
11.	D / Auxins	1	1
12.	C / starch into simple sugars	1	1
13.	D/99%	1	1
14.	D / (ii) and (iv)	1	1
15.	A / Scattering of light	1	1
16.	A / (i) and (ii)	1	1
17.	B / Both Assertion (A) and Reason (R) are true, but Reason (R) is <i>not</i> the correct explanation of Assertion (A).	1	1
18.	A / Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).	1	1
19.	C / Assertion (A) is true, but Reason (R) is false.	1	1
20.	B / Both Assertion (A) and Reason (R) are true, but Reason (R) is <i>not</i> the correct explanation of Assertion (A). SECTION B	1	1
21.	Here $u = -10 \text{ cm}$; $f = -15 \text{ cm}$; $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$	1/2	
	$\frac{1}{-15} = \frac{1}{v} + \frac{1}{-10}$ $\frac{1}{v} = \frac{1}{-15} + \frac{1}{10}$	1/2	
	v =+30 cm	1	2
	Position of image is 30 cm from the mirror		_
22.	(a) $P = \frac{V^2}{R}$	1/2	

	T	1	
	$R = \frac{V^{2}}{P}$ $R_{A} = \frac{(220)^{2}}{50}$ $R_{B} = \frac{(220)^{2}}{25}$ $\frac{R_{A}}{R_{B}} = \frac{1}{2}$	1/2	
	$P = \frac{V^2}{R}$ Since V is same means P is inversely proportional to R. Power of lamp A is double that of B hence Resistance of A is half that of B. $\frac{R_A}{R_B} = \frac{1}{2}$	1	
	(b) $H = \frac{V^2}{R} \times t$ $400 = \frac{V^2}{4} \times 1$	1/2	
23.	V ² =1600 V=40V	1	2
	Tentacies -Bud		
	diagram labelling	1 1	2
24.	 Plugging of the leak in blood vessels prevents lowering of the blood pressure / maintains the efficiency of the pumping system. 	1	
	 Platelets Help to clot the blood at the site of injury. OR 	1/2 1/2	
	(b) (i) Plants have low energy needs because they have a large proportion of dead cells in many tissues / Plants have low energy needs as they do not move	1	
	(ii) Translocation of soluble products of photosynthesis from leaves to other parts of the plant / It transports amino acids and other substances to storage organs of roots, fruits and seeds and to growing organs.	1	2


Page **4** of **11** X_086_31/1/3

		Τ.	
25.	 Evolution of gas 	1	
	Change / Rise in temperature	1	2
26.	(a) $2 HNO_3 + Ca(OH)_2 \longrightarrow Ca(NO_3)_2 + 2 H_2O$	1	
	(a) 2111103 64(611)2 64(1103)2 21120		
	(b) $NaCl + AgNO_3 \longrightarrow AgCl + NaNO_3$	1	2
	(Deduct half mark if equation is not balanced)		
	SECTION C		
27.	(a) It is the amount of work done to bring one coulomb charge from		
	one point to another in the field is 1 joule. / $1V = \frac{1J}{1C}$	1	
	10		
	(b)		
	5Ω 10Ω		
	Τ'		
		1	
	(•)		
	li Co		
	1.5 V		
	Current = $\frac{Potential\ difference}{Resistance} = \frac{1.5\ V}{(5\ \Omega + 10\ \Omega)}$		
	Resistance $-\frac{1}{(5 \Omega + 10 \Omega)}$		
	1·5 V	1	
	$=\frac{1.5 V}{15 \Omega}=0.1 A$	1	3
28.			3
28.	(a)		
	1 1 1 1 p (0		
	$-=-+-= \longrightarrow R_1 = 6 \Omega$		
	$R_1 10 \Omega 15 \Omega 6 \Omega 1$		
	$\frac{1}{R_1} = \frac{1}{10 \Omega} + \frac{1}{15 \Omega} = \frac{1}{6 \Omega} \Rightarrow R_1 = 6 \Omega$		
	$R_1 = \frac{10 \Omega}{10 \Omega} + \frac{1}{40 \Omega} = \frac{100}{2400 \Omega} \Rightarrow R_2 = 24 \Omega$		
	$\frac{1}{R_2} = \frac{1}{60 \Omega} + \frac{1}{40 \Omega} = \frac{100}{2400 \Omega} \Rightarrow R_2 = 24 \Omega$		
	$\frac{1}{R_2} = \frac{1}{60 \Omega} + \frac{1}{40 \Omega} = \frac{100}{2400 \Omega} \Rightarrow R_2 = 24 \Omega$ $\therefore R_1 \text{ and } R_2 \text{ are in series}$	1	
	$\frac{1}{R_2} = \frac{1}{60 \Omega} + \frac{1}{40 \Omega} = \frac{100}{2400 \Omega} \Rightarrow R_2 = 24 \Omega$	1	
	$\frac{1}{R_2} = \frac{1}{60 \Omega} + \frac{1}{40 \Omega} = \frac{100}{2400 \Omega} \Rightarrow R_2 = 24 \Omega$ $\therefore R_1 \text{ and } R_2 \text{ are in series}$ $\therefore R_{\text{total}} = R_1 + R_2 = (6 + 24) = 30 \Omega$	1	
	$\frac{1}{R_2} = \frac{1}{60 \Omega} + \frac{1}{40 \Omega} = \frac{100}{2400 \Omega} \Rightarrow R_2 = 24 \Omega$ $\therefore R_1 \text{ and } R_2 \text{ are in series}$ $\therefore R_{\text{total}} = R_1 + R_2 = (6 + 24) = 30 \Omega$		
	$\frac{1}{R_2} = \frac{1}{60 \Omega} + \frac{1}{40 \Omega} = \frac{100}{2400 \Omega} \Rightarrow R_2 = 24 \Omega$ $\therefore R_1 \text{ and } R_2 \text{ are in series}$	1	
	$\frac{1}{R_2} = \frac{1}{60 \Omega} + \frac{1}{40 \Omega} = \frac{100}{2400 \Omega} \Rightarrow R_2 = 24 \Omega$ $\therefore R_1 \text{ and } R_2 \text{ are in series}$ $\therefore R_{\text{total}} = R_1 + R_2 = (6 + 24) = 30 \Omega$ (b) $V = IR \Rightarrow I = \frac{V}{R} = \frac{15 V}{30 \Omega} = 0.5 \text{ A}$		3
	$\frac{1}{R_2} = \frac{1}{60 \Omega} + \frac{1}{40 \Omega} = \frac{100}{2400 \Omega} \Rightarrow R_2 = 24 \Omega$ $\therefore R_1 \text{ and } R_2 \text{ are in series}$ $\therefore R_{\text{total}} = R_1 + R_2 = (6 + 24) = 30 \Omega$	1	3
	$\frac{1}{R_2} = \frac{1}{60 \Omega} + \frac{1}{40 \Omega} = \frac{100}{2400 \Omega} \Rightarrow R_2 = 24 \Omega$ $\therefore R_1 \text{ and } R_2 \text{ are in series}$ $\therefore R_{\text{total}} = R_1 + R_2 = (6 + 24) = 30 \Omega$ (b) $V = IR \Rightarrow I = \frac{V}{R} = \frac{15 V}{30 \Omega} = 0.5 \text{ A}$	1	3
	$\frac{1}{R_2} = \frac{1}{60 \Omega} + \frac{1}{40 \Omega} = \frac{100}{2400 \Omega} \Rightarrow R_2 = 24 \Omega$ $\therefore R_1 \text{ and } R_2 \text{ are in series}$ $\therefore R_{\text{total}} = R_1 + R_2 = (6 + 24) = 30 \Omega$ (b) $V = IR \Rightarrow I = \frac{V}{R} = \frac{15 V}{30 \Omega} = 0.5 \text{ A}$	1	3
	$\frac{1}{R_2} = \frac{1}{60 \Omega} + \frac{1}{40 \Omega} = \frac{100}{2400 \Omega} \Rightarrow R_2 = 24 \Omega$ $\therefore R_1 \text{ and } R_2 \text{ are in series}$ $\therefore R_{\text{total}} = R_1 + R_2 = (6 + 24) = 30 \Omega$ (b) $V = IR \Rightarrow I = \frac{V}{R} = \frac{15 V}{30 \Omega} = 0.5 \text{ A}$	1	3
	$\frac{1}{R_2} = \frac{1}{60 \Omega} + \frac{1}{40 \Omega} = \frac{100}{2400 \Omega} \Rightarrow R_2 = 24 \Omega$ $\therefore R_1 \text{ and } R_2 \text{ are in series}$ $\therefore R_{\text{total}} = R_1 + R_2 = (6 + 24) = 30 \Omega$ (b) $V = IR \Rightarrow I = \frac{V}{R} = \frac{15 V}{30 \Omega} = 0.5 \text{ A}$	1	3
	$\frac{1}{R_2} = \frac{1}{60 \Omega} + \frac{1}{40 \Omega} = \frac{100}{2400 \Omega} \Rightarrow R_2 = 24 \Omega$ $\therefore R_1 \text{ and } R_2 \text{ are in series}$ $\therefore R_{\text{total}} = R_1 + R_2 = (6 + 24) = 30 \Omega$ (b) $V = IR \Rightarrow I = \frac{V}{R} = \frac{15 V}{30 \Omega} = 0.5 \text{ A}$	1	3

Page **5** of **11** X_086_31/1/3

29.	OBJECT IMAGE	1 ½	
	(ii) A B P F C OBJECT	1 ½	
	(Note: Deduct ½ mark if arrows are not drawn.)		3
30.	(a) • 23 pairs or 46 chromosomes • 1 Pair or 2 chromosomes	1/ ₂ 1/ ₂	
	 (b) In sexually reproducing organisms chromosomes occur in pairs. The members of the pair separate at the time of gamete formation. The two germ cells fuse and form zygote thus restore the same number of chromosomes as their parents. (Award marks if explained by any other method.) 	2	
			3
31.	 (a) Adrenaline Adrenal Gland (b) It acts on heart. Heart beats faster, resulting in more supply of oxygen to skeletal muscles. The blood to the digestive system and skin is reduced due to contraction of muscles around small arteries in these organs. Breathing rate increases because of contraction of diaphragm and the rib muscles. 	1/2 1/2	3
32.	 (a) Take three test tubes and place clean iron nails in each of them. Label these test tubes A, B and C. 		

Page **6** of **11** X_086_31/1/3

Page **7** of **11** X_086_31/1/3

	p 1		1/2	
	$\bullet \mathbf{P} = \frac{1}{f(m)}$		72	
	$-2.5 = \frac{1}{f}$			
	$f = \frac{10}{2.5} = -0$	0.4 m = -40 cm	1/2	
	• Myopia		1/2	
	(ii) (I) Real and inverted			
	(ii) (I) Real and inverted (II) magnified image /siz	ze of image is	½×4	
	double the size of ob	•		
		ther side as that of object		
	(IV) Negative (iii)			
	• The lens with focal length 1	0 cm	1/2	
	• less focal length, more conv		1/2	
	OR (i)			
	(b) (i)			
	F	Air		
	^ 0	Glass		
	N. Fr.			
	Glass —— slab	N. Committee of the Com	2	
		6.1		
	c	M L		
)c /			
	M';''2 H \P			
	(if arrows not marked , deduct half mark)			
	(ii) The ratio of sine of angle of incidence to the sine			
	of angle of refraction	is a constant, for the light of a		
	given colour and for a	given pair of media. /	1	
	sini = constant			
	$\frac{\sin r}{\sin r} = constant$			
	(iii)			
	(iii)			
	Convex Lens	Concave Lens	1	
	(I) Object to be placed between	Object can be placed anywhere		
	O and F (II) Magnified image	in front of the lens Diminished image	1	5
35.	(a) (i)	2		+ -
	(I) Ovary: Produces female gamete (egg) and female		1/2,1/2	
	hormones(oestrogen). (II) Fallonian tube: Site of Fertilization		1	
	(II) Fallopian tube: Site of Fertilization(III) Uterus: Site of implantation and embryonic development.		$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	
			*	
	(ii) Methods of contraception used by males:			
	 Mechanical barrier - 	Condoms		

Page **8** of **11** X_086_31/1/3

	• Surgical method – b (Vasectomy) OR	locking the vas deferens in males	1	
	(b) (i)			
	Self-pollination	Cross-pollination		
	Pollen grains are transferred	Transfer of pollen grains from		
	from stamen to the stigma of the same flower.	stamen of one flower to the stigma of another flower of		
	same nower.	same species.	1+1	
	(ii)			
	A – Stigma : Receives pollen and provides suitable environment			
	for its germination. B –Pollen tube : Carries males germ cells (gametes) to the female		1	
	gamete situated in	•	1	
	C – Egg Cell (Female germ cell) : F	Tuses with male gamete and forms Zygote.		5
36.	(a) (i)	-7.6		
	$\left(\begin{array}{cc} X & XX \\ X & C1 \\ X & XX \end{array}\right)$	XX CI X X X	1	
	(ii)			
	• $CH_4 + Cl_2 \xrightarrow{Sunlight} CH_3Cl + HCl$			
	/ Chloromethane is formed; • substitution reaction		1/2	
	(iii) Alkaline KMnO ₄ / Acidified K	MnO ₄ /Acidified K ₂ Cr ₂ O ₇	1/2, 1/2	
	(a	ny two)		
	(iv)	1	1	
	Covalent compounds	Ionic Compounds		
	Low melting and boiling points	High melting and boiling points	½×4	
	Poor conductors of electric	ity Conduct electricity in aqueous solution and molten state.		
	Generally soft if solids	Hard crystalline solids		
	Generally soluble in oil or non-polar solvents	Generally soluble in soluble in water/polar solvents		
	OR			
	(b) (i) Carbon could gain four electrons forming C ⁴⁻ anion.			
	But it would be difficult for the nucleus with six			
	protons to hold on to	ten electrons. Carbon could also		

Page **9** of **11** X_086_31/1/3

	lose four electrons forming C ⁴⁺ cation. But it would		
	require a large amount of energy to remove four electrons leaving behind a carbon cation with six protons in its nucleus.	2	
	∴ It shares four electrons of the outermost shell to form covalent bond/covalent compound.		
	(ii) There are weak forces of attraction between the molecules	1	
	of covalent compound.		
	(iii) (I) Covalent compounds do not form ions hence are poor conductors.	1	
	(II) Carbon-carbon single bond is very strong and stable.	1	5
	SECTION E		
37.	(a) Live wire- Red Neutral wire- Black	1/2 1/2	
	(b) Power, $P = 1 \text{ kW} = 1 \times 1000 \text{ W} = 1000 \text{ W}$ Voltage, $V = 220 \text{ V}$ Current drawn $I = ?$ $I = \frac{1000 \text{ W}}{220 \text{ V}} = 4.54 \text{ A}$	1/2	
	Current rating should be of 5A.	1/2	
	 (c) (i) The earth wire provides a low resistance conducting path for the current which ensures that any leakage of current to flow to the metallic body of the appliances, keeps its potential to that of the earth. 	1	
	The user will not get an electric shock. OR	1	
	(c) (ii) • Fuse wire • Earth wire • A five in a circuit provents demage to the circuit due to	1/2 1/2	
	 A fuse in a circuit prevents damage to the circuit due to overloading. Earth wire prevents electric shock due to leakage of current. 	1/2 1/2	4
38.	(a) $2 \text{ NaCl} + 2 \text{ H}_2\text{O} \xrightarrow{\text{electricity}} 2 \text{ NaOH} + \text{H}_2 + \text{Cl}_2$ (b)	1	
	Uses of NaOH: Degreasing metals/ Soaps and Detergents/ paper making/ artificial fibres/ preparation of bleach Uses of H2: As fuel/ Margarine/ In preparation of ammonia for fertilizers/preparation of HCl Uses of Cl2: Disinfectant/ PVC/ water treatment/ in swimming pools/ CFC's/ preparation of bleach/ preparation of HCl/ pesticides (Any two uses of anyone product)	1/2,1/2	

Page **10** of **11** X_086_31/1/3

	(c) (i) A – NaHCO ₃ / Sodium Hydrogen Carbonate/Baking soda	1/2	
	B – Na ₂ CO ₃ / Sodium Carbonate	1/2	
	$2 NaHCO_3 \xrightarrow{heat} Na_2CO_3 + H_2O + CO_2$	1	
	OR (c) (ii) • The fixed number of water molecules present in one formula unit of a salt. • CuSO ₄ .5H ₂ O/Copper Sulphate pentahydrate/Blue vitriol • CaSO ₄ .2H ₂ O/Gypsum/Calcium sulphate dihydrate • Na ₂ CO ₃ .10H ₂ O/Washing Soda/Sodium carbonate decahydrate • FeSO ₄ .7H ₂ O/ Green Vitriol/Ferrous sulphate heptahydrate • CaSO ₄ . ½ H ₂ O/Calcium Sulphate hemihydrate/POP	1 1/2,1/2	
	(Any other two examples)		4
39.	(a) Photosynthesis A process by which green plants capture sunlight and convert it to chemical energy with the help of chlorophyll / Process by which carbon dioxide and water is converted into carbohydrates in the presence of sunlight chlorophyll and water.	1/2	
	(b) $6CO_2 + 12H_2O \xrightarrow{\text{Chlorophyll}} C_6H_{12}O_6 + 6O_2 + 6H_2O$	1	
	 (c) (i) Absorption of light energy by chlorophyll Conversion of light energy to chemical energy. Reduction of carbon dioxide to carbohydrates. Desert plants take up CO₂ at night and prepare intermediate, which is acted upon by the energy absorbed by the chlorophyll during the day. 	2	
	OR (c) (ii) (I) Decrease the rate of photosynthesis due to low amount of sunlight. (II) Decreases the rate of photosynthesis due to reduced gaseous exchange. .	1	4

Page **11** of **11** X_086_31/1/3